DEVELOPMENT OF COMPUTER AIDED DETECTION AND DIAGNOSIS TOOL FOR ELUCIDATING THE DIFFERENCE BETWEEN PANCREATIC CYSTIC TUMORS

UCF PI : Dr. Ulas Bagci
Mayo PI: Dr. Michael Wallace

UCF-Mayo Mini Symposium, 28 April 2017
Pancreatic Cancer (PC) & IPMN (Intraductal Papillary Mucinous Neoplasia)

- PC is fourth leading cause of cancer death in the US.
- Poorest prognosis of any major cancer type
- 5-year survival rate is only 7.7%
PC is fourth leading cause of cancer death in the US.

Poorest prognosis of any major cancer type

5-year survival rate is only 7.7%

IPMN is a type of tumor that grows within the pancreatic duct

Important if left untreated, some of them progress to invasive cancer

More common, less invasive
PROBLEM / CLINICAL NEED

➤ To reduce mortality and morbidity rates of PC, it is vital to detect IPMN tumors in early phase, and classify/characterize their types/subtypes precisely for personalized treatment planning.
To reduce mortality and morbidity rates of PC, it is vital to detect IPMN tumors in early phase, and classify/characterize their types/subtypes precisely for personalized treatment planning.

Current (radiology) screening paradigms (MRI and CT) can reveal IPMN tumors, but its uncertainty is high when identifying its risk (low-grade, high-grade).
To reduce mortality and morbidity rates of PC, it is vital to detect IPMN tumors in early phase, and classify/characterize their types/subtypes precisely for personalized treatment planning.

Current (radiology) screening paradigms (MRI and CT) can reveal IPMN tumors, but its uncertainty is high when identifying its risk (low-grade, high-grade).

- International guidelines are imperfect due to highly heterogenous shape and appearance patterns.
To reduce mortality and morbidity rates of PC, it is vital to detect IPMN tumors in early phase, and classify/characterize their types/subtypes precisely for personalized treatment planning.

Current (radiology) screening paradigms (MRI and CT) can reveal IPMN tumors, but its uncertainty is high when identifying its risk (low-grade, high-grade).

- International guidelines are imperfect due to highly heterogenous shape and appearance patterns

Our Overall Goal is to address this significant research gap by developing a computer aided detection (CAD) and diagnosis tool that can differentiate / characterize IPMN tumors.
UCF AND MAYO COLLABORATION

M. Wallace-PI
C. Bolan-Radiologist
P. Kandel, Post-Doc

U. Bagci-PI
S. Hussein (PhD student)
M. Pensky - Statistician
COLLABORATION PLAN – TIMELINE

➢ We visited Mayo Campus at Jacksonville!
➢ (Almost) Biweekly progress meetings
➢ Imaging data transfer and logistic issues delayed our starting date for this project
➢ We target top-tier publication in very near future
➢ NIH and/or DoD grant applications in Fall 2017
OUR PROPOSED SOLUTION AND INITIAL RESULTS!

T1 post contrast

Diffusion image

Convolutional Neural Network

Convolution
Max-pooling

Convolution
Max-pooling

Confidence Fusion

Normal
Low grade
High grade
INITIAL RESULTS TO BE SUBMITTED INTO JOURNAL PUBLICATIONS

- 10 fold cross validation on 60 T1-postcontrast MRI
- 100 trees, 10 times run on each CV set
- Deep features are from deep learning architecture Fast-VGG

Merging class 2 with class 3

<table>
<thead>
<tr>
<th>Metric</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>84.67%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>94.57%</td>
</tr>
<tr>
<td>Specificity</td>
<td>74.50%</td>
</tr>
</tbody>
</table>

GIST Features
- Normal vs. IPMN

<table>
<thead>
<tr>
<th>Metric</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>74.17%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>85.22%</td>
</tr>
<tr>
<td>Specificity</td>
<td>41.67%</td>
</tr>
</tbody>
</table>

Deep Features
- Normal vs. IPMN
Deep features based results are improved when LASSO method is further applied!

<table>
<thead>
<tr>
<th>Metric</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>74.17%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>85.22%</td>
</tr>
<tr>
<td>Specificity</td>
<td>41.67%</td>
</tr>
</tbody>
</table>

Method is also validated on a separate lung cancer data (over 90% accuracy!)

This is the first automated IPMN diagnosis system in the literature, more data will increase the robustness and accuracy of the proposed system!
THANK YOU FOR LISTENING!

<table>
<thead>
<tr>
<th>Metric</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>84.67%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>94.57%</td>
</tr>
<tr>
<td>Specificity</td>
<td>74.50%</td>
</tr>
</tbody>
</table>

Deep neural network

![Image of a deep neural network diagram]