Controlled Drug Release Using Core-shell Hydrogel Nanoparticles for Pancreatic Cancer

Funded by Mayo-UCF Seed Grant Program

Santanu Bhattacharya, Ph.D.
Associate Consultant
Biochemistry and Molecular Biology
Assistant Professor
Biomedical Engineering
Mayo Clinic

Lei Zhai, Ph.D.
Associate Professor
NanoScience Technology Center and Department of Chemistry
University of Central Florida
Current Challenges in Pancreatic Cancer Therapy

- No available early detection tool
- Poor drug delivery
- Drug resistance
- Poor survival with available therapeutics
 - Gemcitabine (6.6 months)
 - nab-paclitaxel plus Gemcitabine (8.7 months)
 - FOLFIRINOX (11.1 months)
Nanoparticle based therapy

• Avoid the unwanted adverse events of chemotherapy

 • Improves solubility, toxicity, dosage and short circulating half-lives of chemotherapeutics

• Enhance deep-tissue penetration

• Cancer cell uptake (Passive or specific)
Long-term goal

Development of biodegradable hydrogel-silica core-shell nanoparticles (HSCSNPs) for targeted drug delivery and controlled systemic release of chemotherapeutics to PDAC tumor or TME to improve therapeutic efficacy.
Proposed hydrogel drug delivery

Hydrogel:
- polyacrylic acid (PAA)
- chitosan (CS)

Drug:
- gemcitabine (GEM)

Ligands:
- GE11

Aim 1: Engineer hydrogel-silica core-shell nanoparticles (HSCSNPs) and examine their drug loading and drug release profile.

Specific Hypothesis:

HSCSNPs provides multiple-level of controlled drug release through manipulating gel properties, silica shell structures and GE11 peptide on HSCSNPs enable the targeted drug delivery to PDAC tumor.

Approach:

1.1. Optimization of GEM incorporation in the nanocomposites;
1.2. Optimization of silica shell thickness to control the drug release kinetics;
1.3. Functionalize HSCSNPs with GE11 peptide (YHWYGYTPQNVI) for targeted delivery;
1.4 Analysis of stability and release kinetics of the engineered core-shell nanoformulations.
Aim 2: Evaluate the therapeutic efficacy of nanoformulations in PDAC cells and in PDAC mouse model.

Specific Hypothesis:

HSCSNP –GEMs with targeting peptide possesses distinguished surface architecture that enhances the therapeutic efficacy.

Approach:

2.1 Evaluate therapeutic efficacies of drug-loaded HSCSNPs in established PDAC cells.

2.2 Analyze the therapeutic efficacy of drug-loaded targeted nanoparticles in animal models of pancreatic cancer.
nanoparticle fabrication (current study)

nanoparticle fabrication (future work)
Preparation of nanoparticles

• Briefly, 25% PAA solution was diluted to 1% by DI water, and Gemcitabine (GEM) and surfactant (1%) was added under stirring.

• Chitosan (0.05%, w/v) was dissolved in 50 mL of an aqueous solution of acetic acid (0.05%, v/v).

• Then 5mL of chitosan solution was added dropwise (2.5 mL/min) to 5mL of PAA/GEM/surfactant solution under mechanical stirring (1200 rpm), and stirring was continued for 30min before EDC was added (molar ratio of PAA:EDC = 10:1) to obtain the aqueous suspension of PAA/chitosan nanoparticles.

• The colloidal suspension was stirred for another 24 hours and then centrifuged at room temperature (30 min at 15,000 rcf, Thermo Fisher Scientific sorvall MTX 150 Micro-Ultracentrifuge)
Determination of the Amount of Gemcitabine Loaded to Chitosan Nanoparticles

• Drug loading measurements were performed by spectrophotometric determinations of the drug remaining in the supernatant after nanoparticle ultracentrifugation at room temperature (30 min at 15,000 rcf).

• Drug incorporation in nanoparticles was expressed in equation (1) and gemcitabine loading was expressed in equation (2).

\[
\text{Drug entrapment efficiency (\%)} = \frac{\text{Mass of drug incorporated (mg)}}{\text{Initial drug added to the suspension (mg)}} \times 100
\]

\[
\text{Drug loading (\%)} = \frac{\text{Mass of drug incorporated (mg)}}{\text{Mass of PBCA NPs (mg)}} \times 100
\]
Release study
Release study

• Briefly, the bags were soaked in water for 12 h before use.

• The dialysis bag, with a cutoff of 12000 Da (Spectrum Spectra/Por 6 dialysis membrane tubing, U.S.A.) retained the chitosan nanoparticles and

• allowed the free gemcitabine to diffuse into the dissolution media.

• Practically, GemChit nanoparticle suspensions were poured into the bags with the two ends fixed by clamps. The bags were placed in a conical flask filled with 100 mL of the receiving phase and were stirred at 200 rpm.

• At different time intervals (0.08, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 6, 9, 24, 48, 72, and 96 h), 3 mL samples of the medium were withdrawn for UV-vis spectrophotometric analysis at 268 nm.

• An equal volume of water was added after sampling to ensure sink conditions.
Releasing profile with different GEM concentration

- PAA:CS mass ratio 20:1
- Surfactant: 1% PEG
Releasing profile with different GEM concentration

- PAA:CS mass ratio 20:1
- Surfactant: 1% Pluronic F68
Releasing profile with different GEM concentration

- PAA:CS mass ratio 20:1
- Surfactant: no surfactant
In vitro toxicity study

- N171-1: PAA:CS:Fe nanoparticles dispersed in water (~ pH 6) ~100 nm
- N171-2: PAA:CS:Fe nanoparticles Dispersed in PBS (~ pH 7) ~200 nm
In vitro toxicity study

- Hydrogel polymer NP: PAA-CS-EDC

72 hrs

96hrs
Future work

• Optimization of silica shell to establish control drug release

• Conjugation of PDAC targeting peptide

• Evaluation of therapeutic efficacies in PDAC cell line and murine PDAC model

• Evaluation of biodistribution
Acknowledgements

Mayo Clinic
- Prof. Dev Mukhopadhyay
- Mr. Shamit Dutta
- Dr. Enfang Wang
- Dr. Ying Wang
- Dr. K. Pal
- Dr. Anil Sharma
- Ramcharan Sing
- Farah Al-Suraih
- Vijay S. Madamsetty

University of Central Florida
- Dr. Lei Zhai
- Nilab Azim
- Xiaoyan Lu
Thank you