Announcing the Final Examination of Md Khurshidul Azad for the degree of Doctor of Philosophy

Time & Location: June 29, 2020 at 12:00 PM in Virtual Defense
https://ucf.zoom.us/j/98415577538?pwd=N1Q1MG4yRnRWLzk1aitsZmF5cXjzZz09
Title: Investigation of Seismocardiographic signal variability and extraction of respiratory phase in human adults

Cardiovascular diseases are one of the major causes of mortality in the United States. Early detection and intervention would be of great significance to engineering and medicine in disease management. Modern clinical techniques of evaluating cardiac function most frequently involve history and physical examination (including stethoscope auscultation), electrocardiograms (ECG), echocardiogram imaging, and various blood tests. Seismocardiographic signals (SCG) which associate with the cardiomechanical activity can be used for monitoring and predicting cardiac health. SCG signals are recorded on the chest surface, typically using an accelerometer. SCG's high potential utility cardiac in health monitoring may be impeded by its spatial, postural, and longitudinal variability. In this dissertation, SCG signals have been recorded from several healthy human subjects. The factors involving SCG's variability including its spatial, postural, and longitudinal variability is documented. Furthermore, optimum posture and sensor placement have been suggested by analyzing several SCG features. The Understanding SCG variability in spatial, postural, and over time in healthy subjects may help identify prominent SCG features and improve predicting cardiac health. In addition, monitoring respiration is critical for patients and can be performed via direct measurement of airflow utilizing a mouthpiece or other access to breathing airflow stream. In some instances, this may be impractical or undesirable especially in an ambulatory setting and less-invasive approaches are needed. The respiration signal can be extracted noninvasively from physiological signals such as ECG or SCG. The current study extracted respiration noninvasively from several physiological signals from healthy subjects and compared that with direct respiration measurement. In addition, the respiratory phase from SCG signals of HF patients was also extracted using traditional signal processing techniques and compared with the respiratory phase extracted from machine learning. Noninvasive respiration would help monitor patient breathing including patients with heart failure.

ID: 984 1557 7538 Password: 866198

Major: Mechanical Engineering

Educational Career:
Bachelor’s of Mechanical Engineering, BS, 2009, Rajshahi University of Engineering & Technology, Bangladesh
Master's of Mechanical Engineering, MS, 2018, University of Central Florida

Committee in Charge:
Hansen Mansy, Chair, Mechanical & Aerospace Engineering
Dazhong, Wu, Mechanical & Aerospace Engineering
Richard, Sandler, College of Medicine
Alain Kassab, Mechanical & Aerospace Engineering

Approved for distribution by Hansen Mansy, Committee Chair, on June 16, 2020.

The public is welcome to attend.