Announcing the Final Examination of Amirmahdi Honardoost for the degree of Doctor of Philosophy

Time & Location: March 31, 2020 at 11:00 AM in CREOL A203
Title: THIN-FILM LITHIUM NIOBATE INTEGRATED PHOTONICS ON SILICON FOR ELECTRO- AND NONLINEAR-OPTIC APPLICATIONS

In order to overcome the drawbacks associated with conventional bulk lithium niobate photonic, thin-film lithium-niobate-on-silicon has been pursued recently. This work presents contributions made to electro- and nonlinear-optic applications of this technology. For electrooptic applications, detailed modeling and design guidelines of optical and radio-frequency parameters of ultracompact modulators are developed and their accuracy in predicting the high-speed performance of such devices have been verified by comparison with experimental results. Novel design techniques and pathways for ultrahigh-speed (sub-terahertz) operation of such modulators, achieving up to 400 GHz modulation bandwidth, are also presented. For optical interconnect applications, novel structures for ultralow-power consumption modulators are designed and fabricated. Coherent modulation schemes, such as quadrature phase shift keying, is also pursued on the same thin-film platform for advanced optical communication systems. For nonlinear-optic applications, fabrication integrability of thin-film lithium niobate and chalcogenide glass waveguides on a single silicon chip for future directions, such as on-chip self-referenced optical frequency comb generation, is experimentally demonstrated. That is a pathway for both second- and third-order optical nonlinearity occurring on lithium niobate and chalcogenide, respectively, is designed and presented. An innovative and robust foundry-compatible back-end-of-line integration method is also proposed, in order to integrate thin-film lithium niobate devices with silicon or silicon-nitride photonic circuitry. Overall, this work extends the capabilities of the thin-film lithium niobate technology for novel electro- and nonlinear-optic applications. Finally, extensions of the aforementioned results suitable for future work are discussed.

Major: Electrical Engineering

Educational Career:
Bachelor's of Electrical Engineering, BS, 2012, Shahid Beheshti University
Master's of Electrical Engineering, MS, 2016, University of Central Florida

Committee in Charge:
Sasan Fathpour, Chair, Electrical and Computer Engineering
Jiann S. Yuan, Electrical and Computer Engineering
Reza Abdolvand, Electrical and Computer Engineering
C. Kyle Renshaw, CREOL
Kyu Young Han, CREOL

Approved for distribution by Sasan Fathpour, Committee Chair, on March 13, 2020.

The public is welcome to attend.