In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet domain) image registration; then, investigate super resolution.

Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands.

Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images.

Major: Computer Science

Educational Career:
Bachelor's of Mathematics, BS, 2008, Istanbul Commerce University
Bachelor's of Industrial Engineering, BS, 2009, Istanbul Commerce University
Master's of Computer Science, MS, 2011, University of Florida

Committee in Charge:
Hassan Foroosh, Chair, Computer Science
Charles Hughes, Computer Science
Ulas Bagci, Computer Science
Marianna Pensky, Mathematics

Approved for distribution by Hassan Foroosh, Committee Chair, on October 5, 2017.

The public is welcome to attend.