Announcing the Final Examination of Yu Bai for the degree of Doctor of Philosophy

Time & Location: July 8, 2016 at 2:00 PM in HEC 438
Title: Stochastic-Based Computing with Emerging Spin-Based Device Technologies

In this dissertation, analog and emerging device physics is explored to provide a technology platform to design new bio-inspired system and novel architecture. With CMOS approaching the nano-scaling, their physics limits in feature size. Therefore, their physical device characteristics will pose severe challenges to constructing robust digital circuitry. Unlike transistor defects due to fabrication imperfection, quantum-related switching uncertainties will seriously increase their susceptibility to noise, thus rendering the traditional thinking and logic design techniques inadequate. Therefore, the trend of current research objectives is to create a non-Boolean high-level computational model and map it directly to the unique operational properties of new, power efficient, nanoscale devices.

The focus of this research is based on two-fold: 1) Investigation of the physical hysteresis switching behaviors of domain wall device. We analyze phenomenon of domain wall device and identify hysteresis behavior with current range. We proposed the Domain-Wall-Motion-based (DWM) NCL circuit that achieves approximately 30x and 8x improvements in energy efficiency and chip layout area, respectively, over its equivalent CMOS design, while maintaining similar delay performance for a one bit full adder. 2) Investigation of the physical stochastic switching behaviors of Magnetic Tunnel Junction (MTJ) device. With analyzing of stochastic switching behaviors of MTJ, we proposed an innovative stochastic-based architecture for implementing artificial neural network (S-ANN) with both magnetic tunneling junction (MTJ) and domain wall motion (DWM) devices, which enables efficient computing at an ultra-low voltage. For a well-known pattern recognition task, our mixed-model HSPICE simulation results have shown that a 34-neuron S-ANN implementation, when compared with its deterministic-based ANN counterparts implemented with digital and analog CMOS circuits, achieves more than 1.5 \times 2 orders of magnitude lower energy consumption and 2 \times 2.5 orders of magnitude less hidden layer chip area.

Major: Electrical Engineering

Educational Career:
Bachelor's of Electronics and Automatic Control, BS, 2008, National Aviation University
Master's of Electrical Engineering, MS, 2011, University of Texas Pan American

Committee in Charge:
Mingjie Lin, Chair, Electrical & Computer Engineering
Ronald F. DeMara, Co-Chair, Electrical & Computer Engineering
Yier Jin, Electrical & Computer Engineering
Jun Wang, Electrical & Computer Engineering
Yajie Dong, NanoScience Technology Center

Approved for distribution by Mingjie Lin, Committee Chair, on June 15, 2016.

The public is welcome to attend.