Multi-object tracking is one of the fundamental problems in computer vision. Almost all multi-object tracking approaches consist of two main components; detection and data association. In the detection step, object hypotheses are generated in each frame. Later, detections that belong to the same target are linked together to form tracks. The latter step is called data association. There are several challenges that render tracking difficult, such as occlusion, background clutter and pose changes, miss-detection, ID switches etc. This dissertation addresses the data association component of tracking and contributes three novel methods for solving data association.

Firstly, a new framework for multi-target tracking that uses a novel data association technique employing the Generalized Maximum Clique Problem (GMCP) formulation is presented. The majority of current methods, such as bipartite matching, incorporate a limited temporal locality of the sequence into the data association problem. On the other hand, our approach incorporates both motion and appearance in a global manner. The proposed method incorporates the whole temporal span and solves the data association problem for one object at a time. GMCP is used to solve the optimization problem of our data association. GMCP leads us to a more accurate approach to multi-object tracking; however, it has some limitations. Firstly, it finds target trajectories one-by-one, missing joint optimization. Secondly, for optimization we use a greedy solver, making GMCP prone to local minima. Finally GMCP tracker is slow.

In order to address these problems, we propose a new graph theoretic problem formulation called Generalized Maximum Multi Clique Problem (GMMCP). GMMCP has all the advantages of the GMCP tracker while addressing its limitations. Previous works assume simplified version of the ideal tracking scenario either in problem formulation or problem optimization. However, we propose a solution to GMMCP where no simplification is assumed in either steps. We show that, GMMCP can be solved efficiently through Binary-Integer Program while guaranteeing the optimal solution. We further propose a speed-up method which reduces the size of input graph without assuming any heuristic.

Thus far we have assumed that the number of people do not exceed a few dozen. However, this is not always the case. In many scenarios such as, marathons, political rallies or religious rites, the number of people in a frame may reach few hundreds or even few thousands. Human detection methods often fail to localize objects in extremely crowded scenes. This limits the use of data association based tracking methods, including GMCP and GMMCP. Finally, we formulate online crowd tracking as a Binary Quadratic Programming, where both detection and data association problems are solved together. Our tracker brings in both target's individual information and contextual cues into a single objective function. Due to large number of targets, state-of-the-art commercial quadratic programing solvers fail to efficiently find the solution to proposed optimization. In order to overcome the computational complexity of available solvers, we propose to use the most recent version of Modified Frank-Wolfe algorithm. The proposed tracker can track hundreds of targets efficiently and improve state-of-the-art results by significant margin.

Major: Computer Science

Educational Career:
Bachelor's of Electrical Engineering , BS, 2011, University of Tehran
Master's of Computer Science , MS, 2014, University of Central Florida

Committee in Charge:
Mubarak Shah, Chair, Computer Science
Shaojie Zhang, Department of Computer Science, University of Central Florida
Ulas Bagci, Department of Computer Science, University of Central Florida
Guo Jun Qi, Department of Electrical Engineering and Computer Science, University of Central Florida
Qipeng Zheng, Department of Industrial Engineering and Management Systems, University of Central Florida
Approved for distribution by Mubarak Shah, Committee Chair, on March 19, 2016.

The public is welcome to attend.