Announcing the Final Examination of Steven Pyle for the degree of Master of Science

Time & Location: June 30, 2015 at 1:30 PM in HEC 450
Title: SELF-SCALING EVOLUTION OF ANALOG COMPUTATION CIRCUITS

The prospective energy and performance improvements of continuous-time analog-based computation compared to the respective discretized digital-based counterpart offer an avenue to continue improving the computational ability of tomorrow's electronic devices at current technology scaling limits. However, analog computation is plagued by the difficulty of designing complex computational circuits as well as the inherent lack of accuracy and precision when compared to digital implementations. In this thesis, evolutionary algorithm-based techniques are utilized with a reconfigurable analog fabric to realize an automated method of designing complex analog-based computational circuits while adapting the functional range to improve performance.

A Self-Scaling Genetic Algorithm is proposed to adapt solutions to computationally-tractable ranges in hardware-constrained analog reconfigurable fabrics. It operates by utilizing a Particle Swarm Optimization (PSO) algorithm that operates synergistically with a Genetic Algorithm (GA) to adaptively scale and translate the functional range of computational circuits composed of high-level or low-level Computational Analog Elements to improve performance and realize functionality otherwise unobtainable on the intrinsic platform. The technique is demonstrated by evolving square, square-root, cube, and cube-root analog computational circuits on the Cypress PSoC-5LP System-on-Chip. Results indicate that the Self-Scaling Genetic Algorithm improves our error metric on average 7.18-fold, up to 12.92-fold for computational circuits that produce outputs beyond device range. Results were also favorable compared to previous works, which utilized extrinsic evolution of circuits with much greater complexity than was possible on the PSoC-5LP.

Major: Electrical Engineering

Educational Career:
Bachelor's of Electrical Engineering, BS, 2013, University of Central Florida

Committee in Charge:
Ronald F. DeMara, Chair, Electrical Engineering and Computer Science
Azadeh Vosoughi, Department of Electrical Engineering and Computer Science
Debashis Chanda, College of Optics and Photonics (CREOL)

Approved for distribution by Ronald F. DeMara, Committee Chair, on June 1, 2015.

The public is welcome to attend.