Announcing the Final Examination of Zenan Yu for the degree of Doctor of Philosophy

Time & Location: March 27, 2015 at 3:00 PM in NanoScience Technology Center 475
Title: Nanoarchitectured Energy Storage Devices

Supercapacitors, the devices that connect the gap between batteries and conventional capacitors, have recently attracted significant attention due to their high specific capacitance, substantially enhanced power and energy densities, and extraordinary cycle life. In order to realize even better performance with supercapacitors, rejuvenated effort towards developing nanostructured electrodes is necessary.

In this dissertation, several strategic directions of nanoarchitecturing the electrodes to enhance the performance of supercapacitors are investigated. An introduction and background of supercapacitors, which includes motivation, classification and working principles, recent nanostructured electrode materials studies, and devices fabrication, are initially presented. A facile method, called Spin-on Nanoprinting (SNAP), to fabricate highly ordered manganese dioxide (MnO2) nanopillars is introduced. The SNAP method further modified to develop carbon nanoarray electrodes is also discussed. Subsequently, a template-free method to develop high aspect ratio copper oxide nanowhiskers on copper substrate is presented, which boosts the surface area by 1000 times compared to non-nanostructured copper substrate. Electrochemically deposited MnO2 on the nanostructured substrate provided a specific capacitance of about 1379 F g-1 which is very close to the theoretical value (~ 1400 F g-1) due to this efficient nanostructure design. In addition, a novel method to decorate metal nanoparticles on graphene aerogel, which considerably enhances the electronic conductivity and the corresponding specific capacitance, is demonstrated. Moreover, ferric oxide (Fe2O3) nanorods prepared by a simple hydrothermal method is discussed. Asymmetric devices assembled based on Fe2O3 nanorods and MnO2 nanowhiskers show excellent electrochemical properties. The devices not only display the capability to store energy but also transmit electricity through the inner copper core. These two functions are independent and do not interfere with each other. Finally, a summary of this dissertation as well as some potential future directions are presented.

Major: Materials Science and Engineering

Educational Career:
Bachelor's of Electronic Science and Technology, BS, 2011, Shanghai University

Committee in Charge:
Jayan Thomas, Chair, NanoScience Technology Center (NSTC), Department of Materials Science and Engineering, and CREOL, College of Optics and Photonics
Sudipta Seal, NanoScience Technology Center (NSTC), Advanced Materials Processing and Analysis Center (AMPAC), and Department of Materials Science & Engineering
Lei Zhai, NanoScience Technology Center (NSTC) and Department of Chemistry
Jiyu Fang, Advanced Materials Processing and Analysis Center (AMPAC) and Department of Materials Science and Engineering
Kalpathy Sundaram, Electrical & Computer Engineering

Approved for distribution by Jayan Thomas, Committee Chair, on February 25, 2015.

The public is welcome to attend.