The proliferation of Mobile Communications platforms is challenging capacity of networks largely because of the data rate at each node. This places significant demands on the performance specifications of personal computing devices as well as cellular and WLAN terminals competing for network access, particularly power consumption. Greater information throughputs are required per node while maintaining a quality of service. This translates to shorter meantime between battery charging cycles and increased thermal footprint. Solutions are required to counter this trend.

This work provides a fundamental view of the mechanisms which affect the thermodynamic efficiency of communications processes along with a method for efficiency enhancement. It is shown that the efficiency of all communications process is related to the dynamic range of momentum exchanges between particles and fields. Several standards based signals are examined to illustrate the potential benefit of the disclosed efficiency enhancement methods.

Major: Electrical Engineering

Educational Career:
Bachelor's of Electrical Engineering, BS, 1983, University of Central Florida
Master's of Electrical Engineering, MS, 1987, University of Central Florida

Committee in Charge:
Pawel Wocjan, Chair, Electrical Engineering and Computer Science
Parveen Wahid, University of Central Florida, EECS
Michael Georgiopoulous, University of Central Florida, EECS
W. Linwood Jones, University of Central Florida, EECS
Eduardo Mucciolo, University of Central Florida, Department of Physics

Approved for distribution by Pawel Wocjan, Committee Chair, on March 30, 2015.

The public is welcome to attend.