Silicon photonics has been a rapidly growing subfield of integrated optics in the last decade and is currently considered a mature technology. The main thrust behind the growth is compatibility with matured and low-cost microelectronic integrated circuits fabrication process. In recent years, several active and passive photonic devices have been demonstrated on silicon. Optical delay lines are among important silicon photonic devices, which are essential for a variety of photonic system applications including optical beam-forming for controlling phased-array antennas, optical communication and networking and optical coherence tomography.

In this thesis, several types of delay lines based on apodized gratings are proposed and demonstrated. Simulation and experimental results suggest that these novel devices can provide high optical delay and tunability at very high bit rate. Further, they have less optical insertion loss compared to current state-of-the-art devices based on photonic crystals and microring resonators.

While most of the research focus of silicon photonics has been in near-infrared wavelengths, extending the operating wavelength range into the 3" - 5" or mid-wave infrared regime is a more recent field of research. A key challenge has been that the standard silicon-on-insulator waveguides are not suitable for mid-infrared, since the material loss of the buried oxide layer becomes substantially high. Here, the silicon-on-sapphire waveguide technology, which can extend silicon's operating wavelength range up to 4.4", is investigated. Further silicon-on-nitride waveguides, boasting a wide transparent range of 1.2" - 6.7", are demonstrated and characterized at both mid-infrared (3.39") and near-infrared (1.55") wavelengths.

Major: Electrical Engineering

Educational Career:
Bachelor's of Electronics Engineering, BS, 2000, NED University of Engg. & Tech. Karachi, Pakistan.
Master's of Electrical Engineering, MS, 2010, University of Central Florida

Committee in Charge:
Dr. Sasan Fathpour, Chair, Department of Electrical Engineering and Computer Science
Patrick L. Likamwa, Department of Electrical Engineering and Computer Science
Peter J. Delfyett, Department of Electrical Engineering and Computer Science
Xun Gong, Department of Electrical Engineering and Computer Science
Winston V. Schoenfeld, CREOL The College of Optics & Photonics

Approved for distribution by Dr. Sasan Fathpour, Committee Chair, on June 25, 2013.

The public is welcome to attend.