Announcing the Final Examination of Edward Lerz for the degree of Master of Science

Time & Location: March 15, 2013 at 9:00 AM in Partnership II 301
Title: Use of Integrated Training Environments to Sustain Army Warfighting Proficiency in an Era of Constrained Resources: Understanding What’s Required to Win the First Battle of the Next Conflict

This research investigates the current state and ability of homestation training infrastructure (TADSS, networks, and facilities) and framework for training (scenarios, databases, and training support packages) to support a Live Virtual Constructive “Integrating Architecture (LVC-IA) delivered Integrated Training Environment (ITE). As combat operations in Central and Southwest Asia come to a close the Army is faced with extreme post-conflict budget cuts and force reductions. Continued evolution of Army training methodology is required to overcome limited resources and maintain force readiness in the anticipated “era of persistent conflict”.

The LVC-IA delivered ITE promises to be the next step in the evolution of training. Interoperation of live, virtual, and constructive simulations in a persistent and consistent manner can collectively train brigade and below units on combined arms tasks in a resource constrained homestation environment. However, LVC-IA cannot act alone in establishing the ITE. Prior to the fielding of LVC-IA, local installations must already possess a training infrastructure that optimizes training resources as well as a framework for training that meets Operational Adaptability training requirements.

To measure the perceived state and ability of homestation training infrastructure and framework for training to support a LVC-IA delivered ITE, a survey was conducted of homestation training community members at the 18 Army installations scheduled for LVC-IA fielding. Additionally, perceptions regarding the role of LVC-IA in establishing the ITE and emerging resources, useful in the development of local framework for training were sought. Findings, conclusions, limitations, lessons learned, and recommendations for future research are presented.

Major: Modeling and Simulation

Educational Career:
Bachelor’s of History, BS, 1991, University of New Hampshire

Committee in Charge:
Dr. Michael Proctor, Chair, Coolege of Engineering and Computer Science/Industrial Engineering, Modeling and Simulation
David Nickerson, College of Sciences/Statistical Computing
Gregory Goodwin, Graduate Faculty Scholar

Approved for distribution by Dr. Michael Proctor, Committee Chair, on February 26, 2013.

The public is welcome to attend.