Time & Location: July 14, 2011 at 3:00 PM in ENG 1 288
Title: STRESS SHIELDING MINIMIZED IN FEMORAL HIP IMPLANTS: A FINITE ELEMENT MODEL OPTIMIZED BY VIRTUAL COMPATIBILITY

The natures of bone mechanics and traditional implant materials produce a recurring problem for patients of total hip arthroplasty (THA): The bone is "shielded" from its typical loading. In the present work, a methodology is presented which creates an innovative design for the femoral component of hip implants. Internal geometry was optimized in order to better match implanted scenarios with healthy, intact bone conditions. The discovered design reduces extreme changes in stresses within remnant bone such that the implant will remain implanted for greater periods of time without additional surgical attention.

Major: Mechanical Engineering

Educational Career:
Bachelor's of Mechanical Engineering, BS, 2000, UCF
Master's of Mechanical Engineering, MS, 2002, UCF

Committee in Charge:
Dr. Larry Chew, Chair, MMAE
Dr. Robert Hoekstra, IEMS
Dr. Kou-Chi Lin, MMAE
Dr. Ali Gordon, MMAE

Approved for distribution by Dr. Larry Chew, Committee Chair, on June 30, 2011.

The public is welcome to attend.