First, a novel method to model and learn the scene activity, observed by a static camera is proposed by modeling motion patterns of objects as a multivariate non-parametric probability density function of spatio-temporal variables. KDE is used to learn this model and a unified Markov Chain Monte-Carlo (MCMC) based framework is proposed for generating the most likely paths in the scene, improving foreground detection, persistent labeling of objects during tracking, and anomaly detection. Experiments with real world videos are reported which validate the proposed approach.

Second, a superior framework is proposed for the discovery and statistical representation of motion patterns in a scene, which has two main advantages over the first approach: first, this model is applicable to scenes of dense crowded motion where tracking may not be feasible, and second, it distinguishes between motion patterns that are distinct at a semantic level of abstraction. A mixture model representation of salient patterns of optical flow is presented, which exploits hierarchical clustering of flow vectors using K-means, spatio-temporal affinity based constraints, and KL divergence. Finally, a pixel level representation of motion patterns is proposed by deriving conditional expectation of optical flow. Results of extensive experiments are presented for multiple surveillance sequences containing numerous patterns involving both pedestrian and vehicular traffic, in static as well as aerial cameras.

Finally, the motion patterns framework is exploited as a new representation for articulated human actions. The proposed method works in a completely unsupervised fashion, and in sharp contrast to state of the art representations like bag of video words, provides a truly semantically meaningful representation. Sequences of primitive actions are discovered in videos, and represented as strings. Experiments on supervised and unsupervised classification are reported for multiple human actions data sets, which confirm the validity, simplicity, and semantically meaningful nature of the proposed representation.

Major: Computer Science

Educational Career:
Bachelor's of Computer Systems Engineering, BS, 2004, GIK Institute of Engineering Sciences and Technology
Master's of Computer Science, MS, 2008, University of Central Florida

Committee in Charge:
Dr. Mubarak Shah, Chair, EECS
Dr. Xin Li, Department of Mathematics
Dr. Marshall Tappen, EECS
Dr. Pawel Wocjan, EECS

Approved for distribution by Dr. Mubarak Shah, Committee Chair, on March 7, 2011.
The public is welcome to attend.