The basic aim of this research is to develop a manufacture friendly process for fabrication of efficient CIGSeS thin film solar cells with reduced thickness. For this reason, a two-step process has been considered the process of choice for preparation of the absorber layer. Extensive research has been carried out on CIGS thin film solar cells in order to establish the thin film technology as the cheaper alternative for silicon PV modules. Device quality CIGS absorber films with thickness in the range of 1.5-2.5 μm are routinely prepared at the laboratory level as well as commercially. If the thickness of this absorber can be reduced further, the cost of the PV module will be reduced significantly. The reason for this significant reduction is the reduction in use of costly rare metal, indium. The problem of availability of indium may become more severe as the production volumes of CIGS PV modules increase. Experiments were carried out to optimize the selenization time and temperature profile along with the thickness of the sodium layer. Efficiencies as high as 9% were achieved through this work for absorber thickness of 0.9 microns. 66% reduction in absorber thickness and corresponding material usage resulted in only 35% reduction in efficiency. The buffer layer thickness was also optimized for the device. Further, the effect of process parameters on the properties of molybdenum back contact films was studied with the aim to achieve a single layer molybdenum back contact film.

Major: Electrical Engineering

Educational Career:
Bachelor's of Electronics Engineering, BS, 2001, Mumbai University
Master's of Electrical Engineering, MS, 2004, University of South Florida

Committee in Charge:
Dr. Neelkanth G. Dhere, Chair, EECS and MMAE
Aarvinda Kar, CREOLE and EECS
Kalpathy Sundaram, EECS
Helge Heinrich, Physics and MMAE

Approved for distribution by Dr. Neelkanth G. Dhere, Committee Chair, on September 23, 2010.

The public is welcome to attend.