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• To develop an improved counts to brightness temp (Tb) 

algorithm for the CONAE Microwave Radiometer on 

the Aquarius/SAC-D satellite 

• Validation of Tb measurements using inter-satellite  

radiometric comparisons (X-CAL) 

• Produce an Algorithm Theoretical Basis Document 

(ATBD) and deliver prototype MatLab code to 

CONAE 
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• Post-launch CFRSL & CONAE evaluated MWR counts-
to-Tb algorithm V5.0 
– Used 6 mo of MWR on-orbit collocation with WindSat 

• Ocean Tb’s exhibited small and acceptable Tb biases 

• Land Tb’s exhibited anomalous behavior  
– Land/water Tb transitions were “Smeared” 

– Step function changes of noise diode deflections 

•  Based upon on-orbit evaluation, it was concluded that: 
– V5.0 was unacceptable for producing MWR science data 

– An improved counts-to-Tb algorithm must be developed to 
address the anomalous Tb effects 

• Further, CONAE developed a revised Counts-to-Tb algo V5.0S 
that included a smear correction 
 

• This was the starting point for my dissertation 
research 
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1. Evaluated the MWR counts-to-Tb algorithm V5.0S 

– On-orbit X-CAL with WindSat indicated that  

• Smear effects at land/water boundaries were removed 

• However, anomalous effect of noise diode deflections remained 

– Determined that MWR system gain varied with scene Tb 

2. Developed a forward model for MWR system 
Counts-to-Tb 

– Empirically derived coefficients to match on-orbit 
observations, including deep space calibrations 

– Characterized model coefficients versus scene Tb 

3. Developed a gain non-linearity correction 

4. Implemented a new inverse model Counts-to-Tb 
algorithm V6.0 

5. Validated algorithm using X-CAL with WindSat 
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Aquarius (AQ) is a mission of “Original 

Exploration”  First NASA mission to measure Sea 

Surface Salinity (SSS) from space 

SAC-D was launched on June 10th , 2011 from 

Vandenberg Air Force Base, California.  

• Aquarius instrument  - NASA 

• MWR - CONAE  

    (Argentinian Space Agency)   

•  MWR provides auxiliary environ 

measurements:  water vapor, 

ocean surface wind speed, and 

oceanic rain rate 



• 3 channel push-broom Dicke 

radiometer: 

– 36.5 GHz H- & V-Pol 

(forward-look) 

– 23.8 GHz H-Pol 

   (aft-look) 
 

• Earth Incidence angle 

– 52o for odd beams 

– 58o for even beams 
 

• Matches the AQ swath width 

of 380 km 
 

MWR supports AQ science by measuring simultaneous & 

collocated ocean brightness temperatures (Tb) 
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Three Dicke radiometer states: 

)1   (           )( setoffrecvrecvina VGTTC 

)2    ( )( setoffrecvrecvNinN VGTTTC 

)3  (       )( setoffrecvrecvoo VGTTC 

Subtracting  (1) from (2) yields the radiometer gain,  

which varies in time 
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• Our objective was to determine the MWR transfer 

function based upon on-orbit measurements 

• However, under typical on-orbit condition, the 

radiometer system gain will vary cyclically (once/orbit) 

due to the receiver physical temperature changes 

• Therefore, a procedure was developed to synthesize 

rad_counts @ constant system gain from MWR 

measurements 
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• Time variable gain was removed and all counts were 

normalized using the following equation: 
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Go  is the mean “long term gain” 
g(Tref)  is the orbital gain change due to phy temp (Tref) 
h(Tin)  is the gain compression due to variable scene 
 brightness temp (and injected noise diode) 

These parameters are estimated during a single orbit where a 
deep-space calibration is performed 
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• Seven Deep Space Calibration (DSC) orbits that 

included, space, ocean, and land observations were used 

to cover wide range of scene Tb’s  

• After counts (gain) normalization, the radiometer 

transfer function was established 

–  Rad_counts = f(Tin) 

• Quadratic regression for 37V channel yielded the 

following 
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• Averaging 2nd order regression coeff’s from 7 DSC orbits, 
the instantaneous counts linearization equation is:  

– For 37 V 

 

– For 37 H 

 

– For 23 H 

 

 

Where   x = ant, N, and ref 

        Tin is the input Tb to the Dicke switch, which is estimated 
using non-linear counts 
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• Characterization of injected noise diode 

temperature (TN) over physical temperature 

• Retrieve antenna switch matrix loss coefficients 

– Empirical method (regression model) was applied 

– Assumption: All transmission and reflection coeff’s 

are constant and are NOT expected to change during 

MWR's mission life time 
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Tap=[Tin-(b2*To+b3*T1+b4*T2+b5*T3+b6*T4)]/b1 
 

– where  

• Tap is the scene brightness temp at horn aperture 

• Tin is the input brightness temperature to antenna port 

of Dicke switch 

• To , T1 , T2 , T3  ,& T4 are MWR physical temps  

• b1, b2, b3, b4, b5 and b6 are antenna switch matrix 

loss coefficients derived using the regression model 
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MWR coffin 

•  The thermal vacuum (TV) test for MWR was 

performed in September 2009. (09/06 – 09/09) 

• Performance of the SW matrix losses coefficients 
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To = 309K 

To = 282K 
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• APC and residual bias correction were applied 

by inter-satellite XCAL 
–  MWR = target & WindSat = reference 

• MWR and WindSat have different incident 

angles, therefore, Tbs were adjusted using 

theoretical radiative transfer model values for 

both satellites (MWRsim and WSsim) 

WSadj= WSobs + (MWRsim  – WSsim ) 

• Double Difference Technique 

                  DD = MWRobs – WSadj 
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• MWR Counts-to-Tb algorithm V6.0 has been 
developed and distributed to the AQ Cal/Val Team 

– MWR transfer function non-linearity in V5.0S has been 
characterized and corrected in V6.0 

– Antenna switch matrix loss coefficients were derived using 
re-analysis of MWR pre-launch TV calib test 

• Validation of V6.0 performed using 2 years of on-
orbit measurements 

– On-orbit X-CAL, between MWR and WindSat, have 
produced the antenna pattern correction (APC) and 
removed small Tb biases 

• V6.0 Algorithm Theoretical Basis Document and 
MatLab code delivered to CONAE for science data 
processing 
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• New MWR Tb data set to be used for tuning and 
validation of the wind speed algorithms 

• XCAL 5 day double difference (DD) biases calculated 
between WindSat & MWR  

– DD = MWR-WS  
• Applied triangular moving average on the 5 day DD time 

series to smooth the correction 

• The new MWR Tb’s V7.0 = V6.0 – Tbbiases 

– These V7.0 Tb’s will be normalized to match the WindSat Tb’s 
in the mean i.e., have zero DD Tb-bias 

• The new “adjusted DD” given in the following charts  
was derived as: 

• DDadj = DDV6.0 -Tb biases 
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