Microwave Radiometer (MWR) Counts to Tb (Brightness Temperature) Algorithm Development (Version 6.0) and On-Orbit Validation

Zoubair Ghazi

CFRSL – Central Florida Remote Sensing Lab

Dissertation Defense October 24, 2014

Dissertation Objective

- To develop an improved counts to brightness temp (Tb) algorithm for the CONAE Microwave Radiometer on the Aquarius/SAC-D satellite
- Validation of Tb measurements using inter-satellite radiometric comparisons (X-CAL)
- Produce an Algorithm Theoretical Basis Document (ATBD) and deliver prototype MatLab code to CONAE

MWR Counts-to-Tb Algorithm History

- Post-launch CFRSL & CONAE evaluated MWR countsto-Tb algorithm V5.0
 - Used 6 mo of MWR on-orbit collocation with WindSat
 - Ocean Tb's exhibited small and acceptable Tb biases
 - Land Tb's exhibited anomalous behavior
 - Land/water Tb transitions were "Smeared"
 - Step function changes of noise diode deflections
- Based upon on-orbit evaluation, it was concluded that:
 - V5.0 was unacceptable for producing MWR science data
 - An improved counts-to-Tb algorithm must be developed to address the anomalous Tb effects
- Further, CONAE developed a revised Counts-to-Tb algo V5.0S that included a smear correction
- This was the starting point for my dissertation
 research

My Research Approach

- 1. Evaluated the MWR counts-to-Tb algorithm V5.0S
 - On-orbit X-CAL with WindSat indicated that
 - Smear effects at land/water boundaries were removed
 - However, anomalous effect of noise diode deflections remained
 - Determined that MWR system gain varied with scene Tb
- 2. Developed a forward model for MWR system Counts-to-Tb
 - Empirically derived coefficients to match on-orbit observations, including deep space calibrations
 - Characterized model coefficients versus scene Tb
- 3. Developed a gain non-linearity correction
- 4. Implemented a new inverse model Counts-to-Tb algorithm V6.0
- 5. Validated algorithm using X-CAL with WindSat

Introduction to Aquarius/SAC-D and MWR

Aquarius/SAC-D Mission

Aquarius (AQ) is a mission of "Original Exploration" First NASA mission to measure Sea Surface Salinity (SSS) from space

SAC-D was launched on **June 10th**, **2011** from Vandenberg Air Force Base, California.

CFRSL

- Aquarius instrument NASA
- MWR CONAE

(Argentinian Space Agency)

 MWR provides auxiliary environ measurements: water vapor,
 ocean surface wind speed, and
 oceanic rain rate

Microwave Radiometer - MWR

MWR supports AQ science by measuring simultaneous & collocated ocean brightness temperatures (*Tb*)

- 3 channel push-broom Dicke radiometer:
 - 36.5 GHz H- & V-Pol (forward-look)
 - 23.8 GHz H-Pol (aft-look)
- Earth Incidence angle
 - 52° for odd beams
 - 58° for even beams
- Matches the AQ swath width of 380 km

MWR Single Channel Block Diagram

Example: Dicke Radiometer Transfer Function (for constant gain)

Radiometer Input to the antenna port of Dicke switch, T_{in} , Kelvin

On-Orbit MWR Transfer Function

- Our objective was to determine the MWR transfer function based upon on-orbit measurements
- However, under typical on-orbit condition, the radiometer system gain will vary cyclically (once/orbit) due to the receiver physical temperature changes
- Therefore, a procedure was developed to synthesize **rad_counts** @ **constant system gain** from MWR measurements

Counts Normalization Procedure to Remove Variable Receiver Gain

 Time variable gain was removed and all counts were normalized using the following equation:

$$Co_{norm_i} = Co_i * \frac{\langle Gain \rangle}{Gain_i}$$

$$Co_i = (To_i + < Trec >) * Gain_i$$

- *To_j* is the instantaneous reference load physical temperature, Kelvin
- *<Trec>* is the orbit average receiver noise temperature
- *Gain*_i is the instantaneous system gain
- *<Gain>* is the orbit average gain

Example Gain Normalization

CFRSL

After Normalization

Measurement of MWR System Gain (Noise Diode Deflection)

37GHz V-pol, Comparison of V5.0S Noise Diode Deflection = $(C_n - C_a)$

Before Count (gain) Normalization After Count (gain) Normalization

Radiometer Input to the antenna port of Dicke switch, T_{in} (Kelvin)

MWR Signal Processing with non-linear system gain compression

$$C_{a} = (T_{ant} + T_{recv}) * G_{recv-1} + V_{off-set}$$
(1)

$$C_{N} = (T_{ant} + T_{N} + T_{recv}) * G_{recv-3} + V_{off-set}$$
(2)

$$C_{ref} = (T_{ref} + T_{recv}) * G_{recv-2} + V_{off-set}$$
(3)

$$(T_{ant} + T_N + T_{recv}) > (T_{ref} + T_{recv}) > (T_{ant} + T_{recv})$$
 therefore,

$$G_{recv-3} < G_{recv-2} < G_{recv-1}$$

MWR Slightly Non-linear Gain Model

$$G_{recv_1} = G_o g(T_{ref}) h_1(T_{in})$$
$$G_{recv_2} = G_o g(T_{ref}) h_2(T_{in})$$
$$G_{recv_3} = G_o g(T_{ref}) h_3(T_{in})$$

 G_o is the mean "long term gain" $g(T_{ref})$ is the orbital gain change due to phy temp (T_{ref}) $h(T_{in})$ is the gain compression due to variable scenebrightness temp (and injected noise diode)

These parameters are estimated during a single orbit where a deep-space calibration is performed

MWR Radiometer Transfer Function for One Orbit

Rad_counts

Gain Compression Function, $h(T_{in})$

Non-Linearity Correction, Radiometer Transfer Function (V5.0S)

- Seven Deep Space Calibration (DSC) orbits that included, space, ocean, and land observations were used to cover wide range of scene Tb's
- After counts (gain) normalization, the radiometer transfer function was established

- $Rad_counts = f(T_{in})$

• Quadratic regression for 37V channel yielded the following

Rad
$$_counts = -7.5 \times 10^{-4} (T_{in})^2 + 16.58 (T_{in}) + 3270$$

MWR Radiometer Transfer Function for 37V V5.0S (constant gain) for One Orbit

Radiometer Input to the antenna port of Dicke switch, T_{in} (Kelvin)

Rad_counts, counts

V6.0 Radiometer Transfer Function Linearization

• Averaging 2nd order regression coeff's from 7 DSC orbits, the instantaneous counts linearization equation is:

- For 37 V
$$C_{x_linear} = C_x - (-7.4677e - 004) * T_{in}^2$$

- For 37 H $C_{x_linear} = C_x - (-6.9064e - 004) * T_{in}^2$

– For 23 H

$$C_{x_linear} = C_x - (-2.1708e - 004) * T_{in}^2$$

Where x = ant, N, and ref

Tin is the input *Tb* to the Dicke switch, which is estimated using non-linear counts

Radiometer Transfer Function 37V (constant gain) V5.0S and V6.0

37GHz V-pol , One Orbit Noise Diode Deflection = $(C_n - C_a)$

V5.0S

V6.0

37GHz V-pol, One Orbit Radiometer Gain

15.5 15.4 15.3

V5.0S

V6.0

Samples

Reanalysis of Prelaunch TV Calibration Test using Linearized Counts

Pre-launch Data Analysis Objectives for V6.0 (using Linearized Counts)

- Characterization of injected noise diode temperature (T_N) over physical temperature
- Retrieve antenna switch matrix loss coefficients
 - Empirical method (regression model) was applied
 - Assumption: All transmission and reflection coeff's are constant and are NOT expected to change during MWR's mission life time

Pre-TV test Block Diagram

Pre-TV test, Comparison of the Noise Diode Deflection V2.0 and V6.0

SAYAK BISWAS V2.0

Samples

Samples

Inversion Model for Apparent Brightness Temperature (T_{ap})

$T_{ap} = [T_{in} - (b_2 * T_o + b_3 * T_1 + b_4 * T_2 + b_5 * T_3 + b_6 * T_4)]/b_1$

- where
 - T_{ap} is the scene brightness temp at horn aperture
 - T_{in} is the input brightness temperature to antenna port of Dicke switch
 - T_o , T_1 , T_2 , T_3 , & T_4 are MWR physical temps
 - b_1 , b_2 , b_3 , b_4 , b_5 and b_6 are **antenna switch matrix** loss coefficients derived using the regression model

Thermal Vacuum Test

CFRSL

37GHz V-pol, Computed Apparent Temp based on: SWM losses and reflection (V2.0), regression model (V6.0)

$$T_{ap} = [T_{in} - (b_2 * T_0 + b_3 * T_1 + b_4 * T_2 + b_5 * T_3 + b_6 * T_4)]/b_1$$

CFRSL

31

Calculated Noise Diode Injection Noise (T_N) for Two Different TV Plateaus

CFRSL

- Post-Launch MWR Calibration Analysis
 - Deep Space Calibration
 - WindSat X-CAL

Deep Space Calibration cause MWR Antenna Beams to view Homogeneous Scene = 2.7 K

View from Night side towards Sun

CFRSL

Post Launch X-CAL Analysis

- APC and residual bias correction were applied by inter-satellite XCAL
 - MWR = target & WindSat = reference
- MWR and WindSat have different incident angles, therefore, Tbs were adjusted using theoretical radiative transfer model values for both satellites (MWR_{sim} and WS_{sim})

$$WS_{adj} = WS_{obs} + (MWR_{sim} - WS_{sim})$$

• Double Difference Technique

$$DD = MWR_{obs} - WS_{adj}$$

37GHz V-pol Beam-1: X-CAL of MWR V6.0 and WindSat

Before Correction

CFRSL

After Correction

37V, Cold Sky Calibration Measurements Even Beams

Samples

Samples

37V, Cold Sky Calibration Measurements Odd Beams

Double Difference Radiometric Biases MWR/WindSat (Five Days Average) Jan 01, 2012 – Dec 31, 2012

Double Difference Biases 37V (K),

Five days Average in 5° Lat Zones 37V, Even Beams for 2012

CFRSL

Five days Average in 5° Lat Zones 37V, Odd Beams for 2012

Jan 01,2012 - Dec 31,2012

Conclusion

- MWR Counts-to-Tb algorithm V6.0 has been developed and distributed to the AQ Cal/Val Team
 - MWR transfer function non-linearity in V5.0S has been characterized and corrected in V6.0
 - Antenna switch matrix loss coefficients were derived using re-analysis of MWR pre-launch TV calib test
- Validation of V6.0 performed using 2 years of onorbit measurements
 - On-orbit X-CAL, between MWR and WindSat, have produced the antenna pattern correction (APC) and removed small Tb biases
- V6.0 Algorithm Theoretical Basis Document and MatLab code delivered to CONAE for science data processing

Publications

Conferences

- 1. Ghazi, Z.; Biswas, S.; Jones, L.; Hejazin, Y.; Jacob, M.M., "On-orbit signal processing procedure for determining Microwave Radiometer non-linearity," Southeastcon, 2013 Proceedings of IEEE, vol., no., pp.1,5, 4-7 April 2013 doi: 10.1109/SECON.2013.6567504
- 2. Ghazi, Zoubair; Santos-Garcia, Andrea; Jacob, Maria Marta; Jones, Linwood, "CONAE Microwave Radiometer (MWR) counts to Tb algorithm and on-orbit validation," Microwave Radiometry and Remote Sensing of the Environment (MicroRad), 2014 13th Specialist Meeting on , vol., no., pp.207,210, 24-27 March 2014 doi: 10.1109/MicroRad.2014.6878941
- Santos-Garcia, A; Biswas, S.; Jones, L.; Ghazi, Z.; "Aquarius/SAC-D Microwave Radiometer brightness temperature validation," Oceans, 2012, vol., no., pp.1,4, 14-19 Oct. 2012 doi: 10.1109/OCEANS.2012.6404830

Back UP

MWR Tb measurements for 8 beams of the 23 GHz H-pol channel during a descending orbital pass over the tip of India

Corresponding MWR Tb time series for beam # 1 and beam # 7 of the MWR 23.8 GHz channel

37GHz V-pol, On-orbit Noise Diode Deflection (<u>NOT gain normalized</u>), Descending Passes for One Day (All Beams)

V5.0S

CFRSL

37H Even Beams

Version 5.0S

37H odd Beams

Version 5.0S

Samples

Samples

23H Even Beams

R2

Β4

B6 B8

1900

Version 6.0

23H odd Beams

CFRSL

Double Difference Biases 37V (K),

Double Difference Biases 37H (K), 2012

Double Difference Biases 37H (K), 2013

Example Gain Normalization

After Gain Normalization

SW Matrix : Primary & Secondary Path

MWR L1B Data (V7)

- New MWR Tb data set to be used for tuning and validation of the wind speed algorithms
- XCAL 5 day double difference (DD) biases calculated between WindSat & MWR

-DD = MWR-WS

- Applied triangular moving average on the 5 day DD time series to smooth the correction
- The new MWR Tb' s $V7.0 = V6.0 Tb_{biases}$
 - These V7.0 Tb's will be normalized to match the WindSat Tb's in the mean i.e., have zero DD Tb-bias
- The new "adjusted DD" given in the following charts was derived as:
 - $DD_{adj} = DD_{V6.0}$ Tb_{biases}

V6.0 23H, DD biases (MWR-WS)

V7.0 23H DD Adjusted

