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Presentation Outline 

• Purpose of this Dissertation  

• TRMM, TMI, & the Inertial Hold 

• Analyses Discussed: 
– Reflector Emissivity 

– Second Stokes Analysis using a Nadir-Look 

• Recommendations 

• Conclusion 

• Future Work 
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Dissertation Objectives 

• Develop & document methods for post-launch calibration of 
spaceborne microwave radiometers 
– Using Calibration Attitude Maneuvers (CAM)  

– Use pre-existing & new CAMs 

 

• Use TRMM Deep Space Calibration (DSC) maneuvers for 
developing this plan 
– Jan & Sept 1998 (7 maneuvers) and July 2014 (3 maneuvers) 

 

• Calibrate TRMM Microwave Imager (TMI) 
– Use this information for the final version of the TB data product 

(Archived/Legacy) 
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Why CAMs? 

• Common post-launch calibration methods: 
– Uses Earth observations which requires months of the instrument 

observations to detect biases 

– Inter-satellite calibration requires the other instrument to be stable 

– Heavily dependent on (imperfect) radiative transfer models that 
require ancillary data (weather models) 

• Calibration Attitude Maneuvers (CAMs): 
– Provide early & accurate results on the performance of the instrument 

– Deep Space Calibration (DSC) Maneuvers (DSCM) use the known 
homogenous non-polarized cosmic microwave background (CMB) 

– Sharp transitions in TB at Earth’s Horizon 

– Nadir-Look: Instruments Line of sight aligned to geodetic vector 

• Overall, uses simpler well known scenes 
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TMI 

• TRMM Microwave Imager (TMI) 

– TRMM was launched on Nov 28, 1997  

– Conically scanning radiometer 

– Main reflector is emissive 

– Over 17 Years of operation 

– Will be turned off on  
April 8, 2015 

– Re-enters Earth atmosphere  
on June 11, 2015 

 

From: http://mrain.atmos.colostate.edu/LEVEL1C/level1C_devtmi.html 4 

Red Boxes: Channels we can 
confidently reconstruct TA 



Tropical Rainfall Measuring Mission 
(TRMM) Spacecraft 

5 CAD of TRMM using AGI’s STK Software 

TMI Main 
Reflector (MR) 

TMI Cold Sky 
Reflector 

(CSR) 

TMI SMA 



TMI Scanning Geometry 

6 Source: “The Tropical Rainfall Measuring Mission (TRMM) Sensor Package," Journal of Atmospheric and Oceanic Technology 
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Example of an Inertial Hold at Yaw=0° 
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Earth Pointing Mode DSC Mode 

TRMM Spacecraft 

TMI MR 
Beam 

TMI CSR 
Beam 

TMI MR 
Beam 

TMI CSR 
Beam 

Earth 

(a) (b) 

Main Reflector & Cold Sky Reflector  
Beams 
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Feed Horn 
Boresight/axis 

(+Z) 

Feed Horn Angles (90° off 
of +Z & 360 ° in the 

azimuthal plane 
(about +Z)) 

TMI 

Depicting Spillover Region 
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Time Series During TA (10 V-pol) & EIA 

Nominal 
Operation 

Main Reflector 
Views Deep 

Space 

Nominal 
Operation 

Main Beam Veering back 
onto the Earth 

Main Reflector boresight Veering off 
the Earth 

Deep Space View (DSV) 1 

TMI Orbit: 641-642 for 
Scan Position 52 

MR boresight Veering off 
the Earth 
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Analyses Performed 

• Data Products Used: 
– TMI 1A11 & Base files: radiometric counts, temperature sensors, 

geolocation purposes 

– ERA-I from CSU for RTM 

• Dissertation Covers: 
– Reconstruction of TA  

• First presented in Proposal 

• Developed 2nd method 

– Beamwidth & Boresight Point 

• Uses the Earth’s Horizon 

– Along-scan Bias 

• Very good agreement with RSS’ results 

– TMI Emissive Reflector  

– Second Stokes using Nadir-Look 
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Discussed in Dissertation & is 
placed in  backup slides 

Discussed within this Presentation 

Discussed within this dissertation 



TB, K 

MR viewing 
CMB 

Geolocation of 
Spacecraft sub-satellite 

Point 

Flight 
Direction 

MR viewing 
CMB 

As mid-scan sweeps 
through Nadir 

MR LOS veering back onto 
Earth 

MR LOS veering 
off Earth 

Ta for 10.65 GHz V-Pol During DSCM 1 
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DSCM Sets 

DSCM Set DSCM # Date Orbit # Yaw (°) Altitude (km) 

1 1 – 6 
Jan 7, 1998 

Jan 8, 1998 

641-646 

657-662 
180 349 

2 7 Sept 2, 1998 4393-4394 0 350 

3 8-10 July 22, 2014 95023-95028 0 400 

4 11-16 
Feb 26, 2015 

Feb 27, 2015 

98452- 98457 

98468- 98473 
0 350 

5 17-20 Mar 25-26, 2015 
98878-98883 

98893-98898 
90 341 
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Analysis 

TMI Main Reflector Emissivity 
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TMI’s Emissive Main Reflector 

• Since the beginning of the mission, NASA observed a positive 
bias in TMI’s TBs 
– One theory was that RFI from TRMM’s Precipitation Radar could be root 

cause (DSCM-7 in 1998 discarded this theory) 

– Since then it has been determined that TMI’s MR is emissive as shown in 
RSS & CFRSL analyzes 

• Dependent on radiative transfer theory & intersatellite calibration 

• An emissive reflector will reflect & emit energy 

 

 
– TB energy incident on the reflector, ε & TMR Physical is the emissivity & 

physical temperature of the face of the reflector, respectively 

• Goal: Determine the emissivity using the entire DSV time series  
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TA (19 V-pol) Earth Contamination 
(Spillover) for DSV 1-6 

Kelvin 

DSV 1 

DSV 2 

DSV 3 

DSV 4 

DSV 5 

DSV 6 

Geolocation of 
Spacecraft sub-satellite 

Point 

Flight 
Direction 
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Reconstruction of TA for 10V 

17 
Deep Space Calibration Maneuver (DSCM) # 3 

Thailand/China radiating 
into spillover region 

TRMM is in Eclipse (TMI is cooling down) 

Madagascar radiating 
into spillover region 

Spillover is significant during this time compared to rest of the signal 



Removing Spillover 
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Removing Spillover Effect 

• Overall we need to simulate the signal that the feed radiation 
pattern (primary pattern) is measuring 

• Need to characterize: 
– main reflector signal (T’B,MR) 

– the spillover: illuminate parts of TMI & TRMM, Space, Earth (Land/Ocean) 

 

1. Geolocate Radiation Pattern for removal of spillover (modified TMI 
geolocation code) 

• Obtain Feed Radiation Pattern (Primary) – the weighting function 

• Obscure Feed Pattern 

2. Simulate spillover portion that intersects Earth (discussed in Dissertation 
& Back-up slides) 
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Longitude 

At Scan 550 

At Scan 800 

At Scan 1050 

At Scan 1200 

Projection of Spillover with  
assigned TB Values (11 V-pol) 
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Deep Space Calibration Maneuver (DSCM) # 3 

TB 

Radiation Pattern: 
72x46 (Az,El) Elements 



Radiation Mask – Main Reflector 
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Using TRMM 
CAD model & 
AGI STK  

Feed Boresight 



Radiation Mask – HGA, CSR, Spacecraft 
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Using TRMM 
CAD model & 
AGI STK  

TRMM “Dog House” 
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Longitude 

At Scan 550 

At Scan 800 

At Scan 1050 

At Scan 1200 

Projection of Spillover with  
assigned TB Values with Obscuration 
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Cold Sky & HGA 
assigned = 2.7 K 

T’B,MR = Varies 

TB 

Deep Space Calibration Maneuver (DSCM) # 3 



Separating Feed Horn TA: 
Main Reflector & Spillover Regions 




















sr

SRSR

gionReSpillover

SRSRSRSR,B

sr

MRMR

AnglesMR

MRMRMRMR,B

A
d)(F

d)(F)(T

d)(F

d)(F)('T

'T

 22

MR: Main Reflector 
SR: Spillover Region 
F: Feed Radiation pattern 

T’B,MR is 
parametrically 
varied until 
right side of 
eqn matches 
T’A 

).Eqn( 2

Simulated as 
discussed in 
dissertation 
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From T’A 
reconstruction 
method 



Matching Simulated TA to Truth: 10V 

25 

TRMM is in Eclipse 

Mid-scan TA 
Simulated 

T’A for 
Mid-scan 

Scan # 

Deep Space Calibration Maneuver (DSCM) # 3 



DSCM 3: TB,MR & Physical Temperatures 

A 2 Kelvin Swing in T’B,MR 
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Deep Space Calibration Maneuver (DSCM) # 3 

Scan # 

Scan # 

Top Radiator Temp 

ADM Temp 



Comparing 10 V-pol Signals DSV-3 
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TRMM is in Eclipse 

Reconstructed 
T’A for Mid-

scan 

T’B,MR 



Solving for TMI Emissivity 
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TMI Main Reflector 

• An emissive MR during DSV: 

29 

• Unknowns: TMR Physical & ε (2 unknowns) 
– Only TB & ε are unique to each channel 

reflectormaintheofemissivity:,T)(T'T PhysicalMRBMR,B   1

Independent 
of frequency 

Depends on 
frequency 

Depends on 
frequency 
(2.7-3.2 K) 



Research on SSMIS Reflector 

• Special Sensor Microwave Imager/Sounder (SSMIS) is DOD 
microwave radiometer on the DMSP series  

• Using previous work by JPL (Shannon Brown) on SSMIS 
Emissive Reflector*; where the emissivity for V & H-Pol are: 

 

 
 

– V = frequency [Hz], ε0 = free-space permittivity [F/m], σeff = effective 
conductivity [S/m], θi is incidence angle 

– Assuming effective conductivity is constant then emissivity varies due 
to the operating frequency 

– As MR views Deep Space, a non-polarized signal, incidence angle is 
neglected sec(θ)=1 & εv = εh 

 30 *Observed F-16 and F-17 Anomalies Detailed Analysis of the Root Causes, and the Path Forward  
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Emissivity Response to Frequency 
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Pure 
Aluminum 

SSMIS 
Bare 

Graphite 

0.04 Ms/m 

Effective Conductivity, MS/m 

*36.59 Ms/m 

*Observed F-16 and F-17 Anomalies Detailed Analysis of the Root Causes, and the Path Forward  

10-3 10-2 10-1 100 101 102 



Constraints & Method 

• Constraints 
– There are two unknowns: TMR,Phys & σeff 

– Using GMI MR temperature sensor as a proxy for TMI MR physical 
temperature limits: 

• Based on Solar Beta angle ±45° & Inertial hold maneuvers (240 – 300 K) 

• Temp Constraints: 235 - 305 K 

– Conductivity was bounded by 1000 to 36e6 S/m 

• Method 
1. For each scan of a given channel 

a) Simulate T’B,MR (SimT’B,MR) for all combinations of TMR,Phys & σeff 

b) Calculate the |T’B,MR - SimT’B,MR| = ΔTB,MR 

2. Average of ΔTB,MR for 10V, 19H, 37V channels , < ΔTB,MR > 

3. Obtain the minimum < ΔTB,MR > with respect to scan 
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Determining Conductivity 
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Scan Bias Correction off 

37 V 

19H 

10V 

TRMM is in Eclipse 
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Determining Conductivity 

34 

Scan Bias Correction off 

37 V 

19H 

10V 

           Lines: Is what I use determine σeff 

------- Lines: Using σeff and TMR,Phys to recalculate TB,MR 

σ
e
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MR Physical Temperature 

<Residual>=1.2 K 



Emissivity Response to Frequency 
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Pure 
Aluminum 

SSMIS 
Bare 

Graphite 

TMI 

0.04 Ms/m 

Effective Conductivity, MS/m 

*36.59 Ms/m 

0.006 Ms/m 

*Observed F-16 and F-17 Anomalies Detailed Analysis of the Root Causes, and the Path Forward  
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Estimated TMI Emissivity Values 
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σeff = 6300 S/m 

RSS (2001) 

σeff = Based on DSCM 1-6 



Estimated TMI Emissivity Values 

Channel RSS (TGARS 2001) CFRSL 
Viewing Space / Viewing Earth 

10.65 V-pol NA 0.028 / 0.031 

10.65 H-pol NA 0.028 / 0.025 

19.35 V-pol 0.0370 0.038 / 0.042 

19.35 H-pol 0.0284 0.038 / 0.034 

21.30 V-pol 0.0377 0.040 / 0.044 

37.00 V-pol 0.0375 0.052 / 0.058 

37.00 H-pol 0.0274 0.052 / 0.048 

85.50 V-pol 0.0396 0.080 / 0.088 

85.50 H-pol 0.0277 0.080 / 0.072 
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Analysis 

Second Stokes Analysis Using a Nadir Look 
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Nadir 
Angle  
of 49° 

Nadir 
Angle 
of 0° 

Earth Earth 

LOS 

Geodetic 
Nadir 

Nadir-Look 

Illustration uses GPM spacecraft as example 39 

Normal Mode Locked Pitch Angle at 49° 



2nd Stokes Analysis (SS) 

• During the “nadir” look 

– The polarization of the same frequency 
should be equal 

– This should be true over a land and 
ocean (assuming low oceans wind 
speeds) 

– Cross pol should be negligible 

– Hence, if Q!=0, there are calibration 
issues 

– Insight into the relative calibration  
of channels at “warmer” TBs compared 
to cold space Nadir Look 

V = H-Pol 
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Image Source: Microwave Radar & Radiometric Remote Sensing 
(Ulaby) • Stokes Parameters: 

 

 

 



Geolocation of EIA for Mid-scan Position 
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EIA 

Samples: 
    EIA<1°mid-scan per orbit: 14-15 
    EIA<10° in along- & x-track all orbits:~32,000 



EIA & Polarization Rotation Effects 
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• EIA & PR dependence must 
be removed 

– Using RTM code provided 
by CSU 

• The corrected Q (Qc) with 
EIA & PR effects removed 
is: 

 

 
• Qobs is the observed Q with 

EIA & PR effects 

• Qsim,PR simulated Q with PR 
effects 

PR,SimObsC QQQ 
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Correcting for PR & EIA Effects: 11 GHz 
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Observed Q with PR & EIA Dependence 

Q, K 

Observed Q with PR & EIA Removed (Qc) 

Q, K 
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Before & After Correction: All Freqs 
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South America 

Africa 

South America 

Africa 

With Contaminated Areas Without Contaminated Areas 

Q, K Q, K 

Q, K Q, K 

Q Over Land for 37 GHz (EIA Cutoff:20°) 
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Determining the Proper EIA Cutoff 
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Comparing Land & Ocean Q Values 

Speculation if differences are erroneous: 

– Correction over ocean needs work 

– Correction over land is required 

– Non-linearity of TMI Receivers 

Speculation if differences are correct: 

– 10 GHz: Has Boresight misalignment 

– 37 GHz: Along-scan Bias is present 

47 

Frequency <Q> / σ <QOcean> - <QLand> 

  
Ocean 

(EIA cutoff: 10°) 

Land 

(EIA cutoff: 3°) 
  

10.65 GHz 0.78 / 0.67 0.06 / 0.83 0.72 

19.35 GHz 0.27 / 0.82 -0.00 / 0.74 0.27 

37.00 GHz 0.57 / 0.93 0.15 / 0.52 0.42 

85.50 GHz 1.08 / 1.20 0.96 / 1.21 0.12 



Work & Timeline 

• This timeline dissertation (Based on Weekly Reports): 

– Part Time: 03-2010 to 05-27-2011 (just over 1 year) 

• Developing Matlab code to read binary 1A11 & geolocated LOS during inertial hold 

• Import ephemeris & attitude data into STK for visualization & confirmation 

• Started Reconstruction of TA for 10 V-pol 

– Other Projects: June 2011 to March 2013 (1 year 9 months) 

– Full Time:  03-29-2013 to Present (~ 2 years) 
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Analysis Performed Before New Notes 

Beam Width  JAXA used for AMSR-E 

Boresight Pointing  Using Earth’s Horizon 

Along-scan Bias  RSS did not use full DSV 

TMI MR Emissivity  RSS did not use full DSV 

SS Analysis  



Conclusion 

• Develop & document methods for post-launch calibration of 
spaceborne microwave radiometers 
– Use pre-existing & new Calibration Attitude Maneuvers 

• Used TRMM Deep Space Calibration maneuvers for 
developing this plan using Jan & Sept 1998 and July 2014 

• All objectives for  bullets-1 & -2 have been successfully 
achieved 

• Calibrate TRMM Microwave Imager (TMI) for the upcoming 
Archived TB data product 
– Has mostly been completed with remaining work to be completed as 

post-doc research during the summer 2015 
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Future Work – To Be Included  
in the Dissertation 

• Beam Width Analysis: 
– Use range of scan positions for better determining TMI beam width 

• reduce the variance as well as more sample points for the 10.65 GHz 
channels to improve the mean (refer to back-up for examples) 

• Beam Boresight: 
– Obtain boresight differences between X-band feed to multi-frequency 

feed channels 

– Use STK or TMI geolocation code to determine match the nadir angles 
for the convex & concave cases 
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Future Work – Post Dissertation 

• Plans to write two Journal Papers: 
– TMI Calibration:  

 Authors: CFRSL, Wyle Systems 

– GMI Calibration:  
 Authors: CFRSL, Wyle Systems, Ball Aerospace, & RSS 

• Use Feb & Mar 2015 Maneuvers: 
– March 2015 maneuvers, Yaw 90°, to better estimate this angle in the 

along-scan direction 

• For Journal Papers 
– Investigate ERA-I for spillover 

• Use multi-freq horn primary pattern from Boeing 
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What this Research Has Influenced 

• GPM Has Used This Nadir-Look Maneuver 
– 2 Orbits in December 2014 

– Locked-pitch (LOS stays aligned with Nadir) over ocean & land 
(Amazon) 

• Detection of RFI in TMI’s Cold Sky View 
– Analysis (week of DSCM Set 3) on TA reconstruction revealed that 

there is RFI from geostationary satellites in the CSR view 

• TRMM 90° Yaw Inertial-Hold -  To: 
– provide a different DSV compared to Yaw 0° /180° maneuvers 

• Along Scan bias & back lobe location 

– determine azimuthal Cold Sky Mirror boresight 
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Recommendations 

• Soil Moisture Active Passive 
(SMAP) 

– L-Band Radar/Radiometer 

– Internally calibrated 

– Feed horn illuminates a 6 m 
parabolic mesh reflector 

– Reflector supported by a single 
boom 

– Not a hard surface reflector so 
compared to simulation or on 
ground testing the 

• beam boresight & beam width 
can change 

• Back lobes can change which is 
of importance because galactic 
background at L-Band is not 
homogenous 
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Image Credit: NASA/JPL-Caltech 
http://www.nasa.gov/jpl/smap/pia19133/ 



Recommendations Cont’d 

• Synthetic Aperture Radiometers: 
– Soil Moisture Ocean Salinity (SMOS) or Hurricane Imaging Radiometer 

(HIRAD) 

– Uses an arrangement of feeds or stick/patch antennas to increase 
beam resolution 

– IFOVs are obtained by using aperture synthesis 

– Benefit from all analysis mentioned within this dissertation 

• Compact Ocean Vector Wind Radiometer (COVWR) 
– Low cost, low mass, low-power internally calibrated radiometer 

– Conical scanner but feed does not rotate with reflector 

– Fully-polarimetric as scan position changes 

– Big advantage would be SS & DSV with spillover & Back lobe 
illuminating the Earth 
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Backup Slides Setup 

• Analyzes that Were Removed Due to Time Constraints 
– TMI Main Beam Width (Link) 

– TMI Main Beam Boresight (Link) 

– Along-scan Bias (Link) 

• Actual Backups 
– Intro (Link) 

– Beam Width (Link) 

– Beam Pointing (Link) 

– Along-scan Bias (Link) 

– Second Stokes (Link) 

– Emissivity (Link) 

– Backups From Proposal (Link) 
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Analyses that Were Removed Due to 
Time Constraints 
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Analysis 

TMI Main Reflector Beamwidth 
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Earth 

TRMM 
Spacecraft 

Illustration of Nadir Angle 
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Geodetic 
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TMI’s IFOV While Leaving Earth 
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Earth’s 
Horizon 

TMI 3dB IFOV 

Earth (ocean) for 
10V at ~90 EIA: 

TB=250 K 

Space: TB=2.7 K 
TMI Boresight 

50% Earth 

50% CMB 



Example of |ΔTA| 
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DSV Transitions Geolocated 

Transition 1 
Transition 2 

Note: Only half of transition is shown since other have views space 

Transition 1 

Transition 2 

DSCMs 1 - 6 

DSCMs 7 - 10 
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Amplitude of ΔTA 
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DSCM-4, Transition 1 

Beamwidths 
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Beamwidth For All Channels 

74 
CSU values are from “The Tropical Rainfall Measuring Mission (TRMM) Sensor Package” (1998) 



Conclusion & Future Work 

• This analysis uses the edge of the earth, a sharp transition in 
TB (Ex: ~Δ240 K @ 10V-pol) for calculating TMI BW in the 
elevation plane 

• H-Pol channels have the largest variation 

• Disagreement between mean BW are largest for 10.65 GHz 
channels for Transition 1 to CSU & CDR beam widths 
– 10V: CSU (Δ=0.12°), CDR (Δ=0.15°) 

– 10H: CSU (Δ=0.35°), CDR (Δ=0.60°) 

• Future Work To Be included in the Dissertation 
– Include multiple scan positions so to reduce the variance as well as 

more sample points for the 10.65 GHz channels to improve the mean 
(refer to back-up for examples) 
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Analysis 

TMI Main Beam Boresight 
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Main Reflector Boresight 

• Method: 
– Follows similar method as Beamwidth analysis except: 

• interested in when the boresight (peak of the secondary radiation 
pattern) passes the Earth’s horizon 

• angle between boresight & geodetic nadir (nadir angle) is used for 
comparisons 

• It is understood that TMI’s MR boresight for 11 GHz channels 
are misaligned compared to the multi-frequency feed 
– But by how much is in question? 
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Channels Offsets from Shiue Memo 
(deg) 

Offsets from TMI Subsystem Test 
Doc (deg) 

Along-Track  X-Track Along-Track X-Track  

10.65 V 0.555 -0.185 0.487 0.09 

10.65 H 0.185 0.555 0.568 0.134 

Table for all Channels: Link 

TMI Subsystem Test Doc: Nov 07, 1994 
Shiue Memo: 12-11-1997  



Boresights w.r.t. Nadir Angle 
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Geodetic Nadir Angle, deg Geodetic Nadir Angle, deg Geodetic Nadir Angle, deg 



Nadir Dependence on Scan Position  
19 V-pol 
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Amplitude of |ΔTA| 19 V-pol 



TMI Scan: Concave & Convex Transitions 

Earth Earth 

Earth Earth 

Yaw: 180 

Yaw: 0 

TMI 
Scan TMI 

Scan 

TMI 
Scan 

TMI 
Scan 

Convex 

Convex 

Concave 

Concave 

Transition 1 Transition 2 
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Concave Transitions 

81 

Difference between 
10V & multi-freq 
channels ~0.3° 



Convex Transitions 
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Difference in nadir 
angle is much 
different for convex 
case 



Conclusion & Future Work 

• There are differences in the Nadir Angles for 10 V- & H-pol 
– Largest in 10 V for Concave but disappears for the convex case 

– There should be an offset in the along-scan direction which justifies 
why we don’t see a difference in angle for convex cases 

 

• Future Work To Be included in the Dissertation 
– Use STK or TMI geolocation code to determine match the nadir angles 

for the convex & concave cases 

 

• Future Work: Post Dissertation 
– Use March 2015 maneuvers, Yaw 90°, to better estimate this angle in 

the along-scan direction 
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Analysis 

Along-scan Bias 
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TA (19 V-pol) Earth Contamination 
(Spillover) for DSV 1-6 

Kelvin 

DSV 1 

DSV 2 

DSV 3 

DSV 4 

DSV 5 

DSV 6 

Geolocation of 
Spacecraft sub-satellite 

Point 

Flight 
Direction 
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Deep Space Views for 19 V-Pol TA 

Scan Position Scan Position Scan Position 

Scan Position Scan Position Scan Position 
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Deep Space Views for 19 V-Pol 

Subtracting out the minimum value 
within each scan 

Normalized TA DSV 1 Normalized TA DSV 2 
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Deep Space Views for 19 V-Pol 

Scan Position Scan Position Scan Position 

Scan Position Scan Position Scan Position 88 



DSCM Sets 
Limited Range Data 

Scan Position Scan Position Scan Position 
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Notice the “wiggles” 



DSCM Set 1 – Averaged w.r.t. NSA 

10V 10H 19V 

19H 21V 37V 

37H 86V 86H 
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DSV 1 

Geodetic Nadir 

91 NSA, 133.79 deg 



Conclusion & Future Work 

• Along-scan analysis is in good agreement with RSS’ (2001) 
analysis but this depends on channel 

• Back-lobe / Spillover is present in this analysis and is obvious 
at an NSA angle of ~133° 
– Depending on channels can be up to 1.0 K for a given scan position 

 

• Future Work: Post Dissertation 
– Include Year 2015 maneuvers into this analysis 
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Extra Slides 
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Back Up 

Intro 
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Gain & Offset for All TMI Channels 
TMI Orbit 601 
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Two Point Calibration 
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Transfer Function (Two-Point Calibration) 
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Temperature 

Warm Load 

Cold Sky 

Warm Load 
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Earth 
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TRMM Microwave Imager (TMI) 
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Facing Main Reflector (MR) 

(a) (b) 

Facing Cold Sky Reflector (CSR) 

MR 

CSR 

Compliments of 
Dave Kunkee 
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SSM/I CDR 
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Squint Angle: 
12.58° 
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Back Up 

Beam Width 
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Transition 1 Transition 2 



11 GHz Channels 
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DSCM 2, 
Transition 1 



19 GHz Channels 
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DSCM 2, 
Transition 1 



21 GHz Channel 
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DSCM 2, 
Transition 1 



37 GHz Channels 
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DSCM 2, 
Transition 1 



86 GHz Channels 

110 

Sc
an

 #
 

Sc
an

 #
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Transition 1 



Back Up 

Boresight Pointing 
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TMI Boresight Table 
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Channels Offsets from Shiue Memo 
(deg) 

Offsets from TMI Subsystem Test 
Doc (deg) 

Along-track  X-Track Along-Track X-Track  

10.65 V 0.555 -0.185 0.487 0.09 

10.65 H 0.185 0.555 0.568 0.134 

19.35 V 0 0 0.06 0.005 

19.35 V 0 0 0.05 0.005 

21.30 V 0 0 0.059 -0.025 

37.00 V 0 0.1 0.073 -0.006 

37.00 H 0.1 0 0.069 -0.001 

85.50 V 0.1 0 0.049 -0.030 

85.50 H 0.05 0.05 0.065 -0.010 

TMI Subsystem Test Doc: Nov 07, 1994 (Outdoor test range) 
Shiue Memo: 12-11-1997  (Measured by Hughes) 



Convex & Concave Comparisons  
for 19 V-pol (DSCMs 1 to 10) 
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Concave 

Convex 



Back Up 

Along-scan Bias 
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115 

This is Wentz’ Along-scan bias analysis for TMI’s 9 channels. Comparison of the 
average along-scan error derived from ocean observations and from deep-
space observations. The observed TA anomaly is plotted versus scan position. 
The solid black and gray curves come from ocean observations for yaw 
orientations of 0 and 180, respectively, during 1998. The dashed curves come 
from deep-space observations during January 1998 



Along Scan Bias 
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Full Range Data for DSCM 
Set 1 



19 V-pol 
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Insensitivity of Along-Scan Analysis to 
Reconstruction Errors 
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Combined DSC Sets 
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Limited Range Data 

Scan Position Scan Position Scan Position 

Bars length = 1σ 



DSCM Set 2 – Averaged w.r.t. NSA 
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10V 10H 19V 

19H 21V 37V 

37H 86V 86H 



DSCM Set 3 – Averaged w.r.t. NSA 
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10V 10H 19V 

19H 21V 37V 

37H 86V 86H 



Comparing Biases for Range of Scans 



Back Up 

Second Stokes Analysis 
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SS Analysis Over Ocean Flow Chart 

Correct for EIA & PR 
Effects 

Ancillary Data: 
ERA-Interim 

Observed TAs 

RTM (XCAL & RSS)  
Fortran From CSU 

Geolocation: 
Lat, Lon, EIA 

Simulated TBs 

TAs with EIA & 
PR dependence 

Removed 

124 



Beginning 
of Orbit 
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V-pol E-field (Black) 
H-pol E-field (Green) 

Flight Direction 

sub-satellite Point 

Scan Direction 

Plane of Incidence 

IFOV 

-Solid Lines antenna electric  
  field 
-Dashed Lines are what the  
  RTM simulates 
 



Before & After Correction: 11 GHz 
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Limited to  
14 to 15 samples 

Sweeping Through Nadir 

129 High Res Scan Angle Increment: 0.63° 

Thinking of 
Removing 



11 GHz 
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Thinking of 
Removing 



South America 

Africa 

South America 

Africa 

South America 

Africa 

Q at 37GHz Before Removal 
Of Contaminated Areas 

Q at 37GHz After Removal 
Of Contaminated Areas 

EIA After Removal Of 
Contaminated Areas 

Q, K Q, K 

Q, K degrees Q, K 

Geolocation of Q Over Land 
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Back Up 

Emissivity 
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Feed Horn 
Boresight/axis 

(+Z) 

Feed Horn Angles (90° off 
of +Z & 360 ° in the 

azimuthal plane 
(about +Z)) 

TMI 

Angles Feed Horn is Defined As 
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Longitude Index 

Longitude Index 

Longitude Index 

Longitude Index 

SMT Window (in Hours): 0 to 6 SMT Window (in Hours): 3 to 9 

SMT Window (in Hours): 6 to 12 SMT Window (in Hours): 9 to 15 



Empirical Method Flow Chart 
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Collocate: Combine 
Lat/Lon within same 

SMT Window 

Gridded TA 
Map at 

Nominal EIA 
(52.8°) 

Gridded TA of 
MR during 

DSCM 
 (EIA: 0 - 90°) 

Subtract Difference 
as a function of EIA 
over land & ocean 

separately 

Apply curve fit to the 
data 



Orbits: 641 & 642 (Ocean) 
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Different color scale 



Orbits: 641 & 642 (Land) 
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Different color scale 



TB to EIA Empirical Relationship 
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Up to 150 Kelvin change 
from nominal EIA 

Up to 60 Kelvin change 
from nominal EIA 



La
ti

tu
d

e
 

Longitude 

At Scan 550 

At Scan 800 

At Scan 1050 

At Scan 1200 

EIA of Spillover 
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Matching Simulated TA to Truth: 10V 

TRMM is in Eclipse 

Edge of scan 
TA 

Mid-scan TA 

Simulated 
T’A for 

Mid-scan 

141 
Deep Space Calibration Maneuver (DSCM) # 3 



GMI MR Physical Temperature: 
Inertial Holds 
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May 20, 2014 Maneuvers Dec 09, 2014 Maneuvers 



GMI MR Physical Temperature: 
Normal Orbit 
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Relative Scan # Relative Scan # 



Determining Conductivity 

144 

Scan Bias Correction off 
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37 V 

19H 

10V 

------- Lines: Is what I use determine σeff 

           Lines: Using σeff and TMR,Phys to recalculate TB,MR 



Reasons for Disagreement in  
Conductivity 

• Reconstructed TA is imperfect 

• Scan Angle Bias is not corrected for 

• There can be an entire TB offset that we are not correcting for 

• Imperfections in the Spillover Map – maybe use ERA-I 

• Polarization Rotation should be corrected in while using the 
Spillover Map? 

• Feed Horn Pattern is not correct 

• 10 GHz feed horn squint angle is not applied 
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Why I Believe Sun Intrusion into the  
Warm Load Occurs 



BackUps From Proposal 
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Cosmic Background 

GMI Frequencies 

148 



Notes 2: 

• Cosmic Microwave Background (CMB) 
– Thermal radiation left over from the Big Bang of cosmology, i.e., 

radiation left over from an early stage in the development of the 
universe 

– Is a cosmic background radiation that is fundamental to observational 
cosmology because it is the oldest light in the universe 
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