

An On-Orbit Calibration Procedure For Spaceborne Microwave Radiometers Using Special Spacecraft Attitude Maneuvers

Spencer Lee Farrar Central Florida Remote Sensing Lab University of Central Florida

> PhD Defense April 7th, 2015

Presentation Outline

- Purpose of this Dissertation
- TRMM, TMI, & the Inertial Hold
- Analyses Discussed:
 - Reflector Emissivity
 - Second Stokes Analysis using a Nadir-Look
- Recommendations
- Conclusion
- Future Work

Dissertation Objectives

- Develop & document methods for post-launch calibration of spaceborne microwave radiometers
 - Using Calibration Attitude Maneuvers (CAM)
 - Use pre-existing & new CAMs
- Use TRMM Deep Space Calibration (DSC) maneuvers for developing this plan
 - Jan & Sept 1998 (7 maneuvers) and July 2014 (3 maneuvers)
- Calibrate TRMM Microwave Imager (TMI)
 - Use this information for the final version of the TB data product (Archived/Legacy)

Why CAMs?

- Common post-launch calibration methods:
 - Uses Earth observations which requires months of the instrument observations to detect biases
 - Inter-satellite calibration requires the other instrument to be stable
 - Heavily dependent on (imperfect) radiative transfer models that require ancillary data (weather models)
- Calibration Attitude Maneuvers (CAMs):
 - Provide early & accurate results on the performance of the instrument
 - Deep Space Calibration (DSC) Maneuvers (DSCM) use the known homogenous non-polarized cosmic microwave background (CMB)
 - Sharp transitions in TB at Earth's Horizon
 - Nadir-Look: Instruments Line of sight aligned to geodetic vector
- Overall, uses simpler well known scenes

TMI

- <u>TRMM Microwave Imager (TMI)</u>
 - TRMM was launched on Nov 28, 1997
 - Conically scanning radiometer
 - Main reflector is emissive
 - Over 17 Years of operation
 - Will be turned off on April 8, 2015
 - Re-enters Earth atmosphere on June 11, 2015

Red Boxes: Channels we can confidently reconstruct T_A

10.65	19.35	19.35	21.3	37.0	37.0	85.5	85.5
Η	V	Н	V	V	Н	V	Н
100	500	500	200	2000	2000	3000	3000
0.54	0.50	0.47	0.71	0.36	0.31	0.52	0.93
63 x 37	30 x 18	30 x 18	23 x 18	16 x 9	16 x 9	7 x 5	7 x 5
13.9x9.1	13.9x9.1	13.9x9.1	13.9x9.1	13.9x9.1	13.9x9.1	13.9x4.6	13.9x4.6
6.6	6.6	6.6	6.6	6.6	6.6	3.3	3.3
	10.65 H 100 0.54 63 x 37 13.9x9.1 6.6	10.65 19.35 H V 100 500 0.54 0.50 63 x 37 30 x 18 13.9x9.1 13.9x9.1 6.6 6.6	10.65 19.35 19.35 H V H 100 500 500 0.54 0.50 0.47 63 x 37 30 x 18 30 x 18 13.9x9.1 13.9x9.1 13.9x9.1 6.6 6.6 6.6	10.65 19.35 19.35 21.3 H V H V 100 500 500 200 0.54 0.50 0.47 0.71 63 x 37 30 x 18 30 x 18 23 x 18 13.9x9.1 13.9x9.1 13.9x9.1 13.9x9.1 6.6 6.6 6.6 6.6	10.65 19.35 19.35 21.3 37.0 H V H V V 100 500 500 200 2000 0.54 0.50 0.47 0.71 0.36 63 x 37 30 x 18 30 x 18 23 x 18 16 x 9 13.9x9.1 13.9x9.1 13.9x9.1 13.9x9.1 13.9x9.1 6.6 6.6 6.6 6.6 6.6	10.65 19.35 19.35 21.3 37.0 37.0 H V H V V H 100 500 500 200 2000 2000 0.54 0.50 0.47 0.71 0.36 0.31 63 x 37 30 x 18 30 x 18 23 x 18 16 x 9 16 x 9 13.9x9.1 13.9x9.1 13.9x9.1 13.9x9.1 13.9x9.1 13.9x9.1 6.6 6.6 6.6 6.6 6.6 6.6 6.6	10.65 19.35 19.35 21.3 37.0 37.0 85.5 H V H V V H V 100 500 500 200 2000 2000 3000 0.54 0.50 0.47 0.71 0.36 0.31 0.52 63 x 37 30 x 18 30 x 18 23 x 18 16 x 9 16 x 9 7 x 5 13.9x9.1 13.9x9.1 13.9x9.1 13.9x9.1 13.9x9.1 13.9x9.1 3.3

From: http://mrain.atmos.colostate.edu/LEVEL1C/level1C_devtmi.html

Tropical Rainfall Measuring Mission (TRMM) Spacecraft

CAD of TRMM using AGI's STK Software

TMI Scanning Geometry

Source: "The Tropical Rainfall Measuring Mission (TRMM) Sensor Package," Journal of Atmospheric and Oceanic Technology

Example of an Inertial Hold at Yaw=0°

Main Reflector & Cold Sky Reflector Beams

Earth Pointing Mode

(a)

DSC Mode

(b)

Depicting Spillover Region

Time Series During T_A (10 V-pol) & EIA

Analyses Performed

- Data Products Used:
 - TMI 1A11 & Base files: radiometric counts, temperature sensors, geolocation purposes
 - ERA-I from CSU for RTM
- Dissertation Covers:

T_a for 10.65 GHz V-Pol During DSCM 1

DSCM Sets

	DSCM Set	DSCM #	Date	Orbit #	Yaw (°)	Altitude (km)	
	1	1 – 6	Jan 7, 1998	641-646	190	349	
			Jan 8, 1998	657-662	100		
	2	7	Sept 2, 1998	4393-4394	0	350	
	3	8-10	July 22, 2014	95023-95028	0	400	
	Λ	11 10	Feb 26, 2015	98452- 98457	0	250	
	4	11-10	Feb 27, 2015	98468- 98473	0	350	
	5	17-20	Mar 25-26, 2015	98878-98883	90	341	
				98893-98898			

Analysis

TMI Main Reflector Emissivity

TMI's Emissive Main Reflector

- Since the beginning of the mission, NASA observed a positive bias in TMI's T_Bs
 - One theory was that RFI from TRMM's Precipitation Radar could be root cause (DSCM-7 in 1998 discarded this theory)
 - Since then it has been determined that TMI's MR is emissive as shown in RSS & CFRSL analyzes
 - Dependent on radiative transfer theory & intersatellite calibration
- An emissive reflector will reflect & emit energy

$$T'_{B,MR} = T_B \cdot (1 - \varepsilon) + T_{MR Physical} \cdot \varepsilon \qquad (Eqn.1)$$

- T_B energy incident on the reflector, $\varepsilon \& T_{MR Physical}$ is the emissivity & physical temperature of the face of the reflector, respectively
- Goal: Determine the emissivity using the entire DSV time series

T_A (19 V-pol) Earth Contamination (Spillover) for DSV 1-6

Kelvin

CFRSL

Reconstruction of T_A for 10V

Removing Spillover

Removing Spillover Effect

- Overall we need to simulate the signal that the feed radiation pattern (primary pattern) is measuring
- Need to characterize:
 - main reflector signal (T $'_{B,MR}$)
 - the spillover: illuminate parts of TMI & TRMM, Space, Earth (Land/Ocean)
 - 1. Geolocate Radiation Pattern for removal of spillover (modified TMI geolocation code)
 - Obtain Feed Radiation Pattern (Primary) the weighting function
 - Obscure Feed Pattern
 - Simulate spillover portion that intersects Earth (discussed in Dissertation & Back-up slides)

Radiation Mask – Main Reflector

AGI STK

Radiation Mask – HGA, CSR, Spacecraft

Using TRMM CAD model & AGI STK

Matching Simulated T_A to Truth: 10V

Deep Space Calibration Maneuver (DSCM) # 3

Comparing 10 V-pol Signals DSV-3

Solving for TMI Emissivity

TMI Main Reflector

• An emissive MR during DSV:

- Unknowns: $T_{MR Physical} \& \varepsilon$ (2 unknowns)
 - Only TB & ε are unique to each channel

Research on SSMIS Reflector

30

- Special Sensor Microwave Imager/Sounder (SSMIS) is DOD microwave radiometer on the DMSP series
- Using previous work by JPL (Shannon Brown) on SSMIS Emissive Reflector*; where the emissivity for V & H-Pol are:

$$\varepsilon_{v} \cong \sqrt{\frac{16\pi \upsilon \varepsilon_{0}}{\sigma_{eff}}} \sec \theta_{i} \qquad \varepsilon_{h} \cong \varepsilon_{v} \cos^{2} \theta_{i} \qquad (Eqns.3\&4)$$

- v = frequency [Hz], $\varepsilon_0 =$ free-space permittivity [F/m], $\sigma_{eff} =$ effective conductivity [S/m], ϑ_i is incidence angle
- Assuming effective conductivity is constant then emissivity varies due to the operating frequency
- As MR views Deep Space, a non-polarized signal, incidence angle is neglected sec(θ)=1 & $\varepsilon_v = \varepsilon_h$

Emissivity Response to Frequency

*Observed F-16 and F-17 Anomalies Detailed Analysis of the Root Causes, and the Path Forward

Constraints & Method

- Constraints
 - There are two unknowns: $T_{MR,Phys}$ & σ_{eff}
 - Using <u>GMI MR temperature</u> sensor as a proxy for TMI MR physical temperature limits:
 - Based on Solar Beta angle ±45° & Inertial hold maneuvers (240 300 K)
 - Temp Constraints: 235 305 K
 - Conductivity was bounded by 1000 to 36e6 S/m
- Method
 - 1. For each scan of a given channel
 - a) Simulate $T'_{B,MR}$ (Sim $T'_{B,MR}$) for all combinations of $T_{MR,Phys} \& \sigma_{eff}$
 - b) Calculate the $|T'_{B,MR} SimT'_{B,MR}| = \Delta T_{B,MR}$
 - 2. Average of $\Delta T_{B,MR}$ for 10V, 19H, 37V channels , $< \Delta T_{B,MR} >$
 - 3. Obtain the minimum $\langle \Delta T_{B,MR} \rangle$ with respect to scan

Determining Conductivity

Scan Bias Correction off

33

Determining Conductivity

Scan Bias Correction off

*Observed F-16 and F-17 Anomalies Detailed Analysis of the Root Causes, and the Path Forward

Estimated TMI Emissivity Values

Channel	RSS (TGARS 2001)	CFRSL Viewing Space / Viewing Earth
10.65 V-pol	NA	0.028 / 0.031
10.65 H-pol	NA	0.028 / 0.025
19.35 V-pol	0.0370	0.038 / 0.042
19.35 H-pol	0.0284	0.038 / 0.034
21.30 V-pol	0.0377	0.040 / 0.044
37.00 V-pol	0.0375	0.052 / 0.058
37.00 H-pol	0.0274	0.052 / 0.048
85.50 V-pol	0.0396	0.080 / 0.088
85.50 H-pol	0.0277	0.080 / 0.072

Analysis

Second Stokes Analysis Using a Nadir Look

Nadir-Look

2nd Stokes Analysis (SS)

• Stokes Parameters:

- During the "nadir" look
 - The polarization of the same frequency should be equal
 - This should be true over a land and ocean (assuming low oceans wind speeds)
 - Cross pol should be negligible
 - Hence, if Q!=0, there are calibration issues
 - Insight into the relative calibration of channels at "warmer" TBs compared to cold space

Image Source: Microwave Radar & Radiometric Remote Sensing (Ulaby)

Geolocation of EIA for Mid-scan Position

41

EIA & Polarization Rotation Effects

- EIA & PR dependence must be removed
 - Using RTM code provided by CSU
- The corrected Q (Q_c) with EIA & PR effects removed is:

$$Q_C = Q_{Obs} - Q_{Sim, PR}$$

- Q_{obs} is the observed Q with EIA & PR effects
- Q_{sim,PR} simulated Q with PR effects

Correcting for PR & EIA Effects: 11 GHz

Observed Q with PR & EIA Dependence 2.5 DSCM 2 -22 1.5 0.5 -26 DSCM 5 -28 -0.5 -15 -10 -5 Π 5 Q, K

Observed Q with PR & EIA Removed (Qc)

Before & After Correction: All Freqs

Q Over Land for 37 GHz (EIA Cutoff:20°)

Determining the Proper EIA Cutoff

Comparing Land & Ocean Q Values

Frequency	<q> / σ</q>		<q<sub>Ocean> - <q<sub>Land></q<sub></q<sub>
	Ocean	Land	
	(EIA cutoff: 10°)	(EIA cutoff: 3°)	
10.65 GHz	0.78 / 0.67	0.06 / 0.83	0.72
19.35 GHz	0.27 / 0.82	-0.00 / 0.74	0.27
37.00 GHz	0.57 / 0.93	0.15 / 0.52	0.42
85.50 GHz	1.08 / 1.20	0.96 / 1.21	0.12

Speculation if differences are erroneous:

- Correction over ocean needs work
- Correction over land is required
- Non-linearity of TMI Receivers

Speculation if differences are correct:

- 10 GHz: Has Boresight misalignment
- 37 GHz: Along-scan Bias is present

Work & Timeline

Analysis	Performed Before	New	Notes
Beam Width	\checkmark		JAXA used for AMSR-E
Boresight Pointing		\checkmark	Using Earth's Horizon
Along-scan Bias	\checkmark		RSS did not use full DSV
TMI MR Emissivity	\checkmark		RSS did not use full DSV
SS Analysis		\checkmark	

- This timeline dissertation (Based on Weekly Reports):
 - Part Time: 03-2010 to 05-27-2011 (just over 1 year)
 - Developing Matlab code to read binary 1A11 & geolocated LOS during inertial hold
 - Import ephemeris & attitude data into STK for visualization & confirmation
 - Started Reconstruction of T_A for 10 V-pol
 - Other Projects: June 2011 to March 2013 (1 year 9 months)
 - Full Time: 03-29-2013 to Present (~ 2 years)

Conclusion

- Develop & document methods for post-launch calibration of spaceborne microwave radiometers
 - Use pre-existing & new Calibration Attitude Maneuvers
- Used TRMM Deep Space Calibration maneuvers for developing this plan using Jan & Sept 1998 and July 2014
- All objectives for bullets-1 & -2 have been successfully achieved
- Calibrate TRMM Microwave Imager (TMI) for the upcoming Archived T_B data product
 - Has mostly been completed with remaining work to be completed as post-doc research during the summer 2015

Future Work – To Be Included in the Dissertation

- Beam Width Analysis:
 - Use range of scan positions for better determining TMI beam width
 - reduce the variance as well as more sample points for the 10.65 GHz channels to improve the mean (refer to <u>back-up</u> for examples)
- Beam Boresight:
 - Obtain boresight differences between X-band feed to multi-frequency feed channels
 - Use STK or TMI geolocation code to determine match the nadir angles for the convex & concave cases

Future Work – Post Dissertation

- Plans to write two Journal Papers:
 - TMI Calibration:
 - Authors: CFRSL, Wyle Systems
 - GMI Calibration: Authors: CFRSL, Wyle Systems, Ball Aerospace, & RSS
- Use Feb & Mar 2015 Maneuvers:
 - March 2015 maneuvers, Yaw 90°, to better estimate this angle in the along-scan direction
- For Journal Papers
 - Investigate ERA-I for spillover
- Use multi-freq horn primary pattern from Boeing

What this Research Has Influenced

- GPM Has Used This Nadir-Look Maneuver
 - 2 Orbits in December 2014
 - Locked-pitch (LOS stays aligned with Nadir) over ocean & land (Amazon)
- Detection of RFI in TMI's Cold Sky View
 - Analysis (week of DSCM Set 3) on T_A reconstruction revealed that there is RFI from geostationary satellites in the CSR view
- TRMM 90° Yaw Inertial-Hold To:
 - provide a different DSV compared to Yaw 0° /180° maneuvers
 - Along Scan bias & back lobe location
 - determine azimuthal Cold Sky Mirror boresight

Recommendations

- Soil Moisture Active Passive (SMAP)
 - L-Band Radar/Radiometer
 - Internally calibrated
 - Feed horn illuminates a 6 m parabolic mesh reflector
 - Reflector supported by a single boom
 - Not a hard surface reflector so compared to simulation or on ground testing the
 - beam boresight & beam width can change
 - Back lobes can change which is of importance because galactic background at L-Band is not homogenous

Image Credit: NASA/JPL-Caltech http://www.nasa.gov/jpl/smap/pia19133/

Recommendations Cont'd

- Synthetic Aperture Radiometers:
 - Soil Moisture Ocean Salinity (SMOS) or Hurricane Imaging Radiometer (HIRAD)
 - Uses an arrangement of feeds or stick/patch antennas to increase beam resolution
 - IFOVs are obtained by using aperture synthesis
 - Benefit from all analysis mentioned within this dissertation
- Compact Ocean Vector Wind Radiometer (COVWR)
 - Low cost, low mass, low-power internally calibrated radiometer
 - Conical scanner but feed does not rotate with reflector
 - Fully-polarimetric as scan position changes
 - Big advantage would be SS & DSV with spillover & Back lobe illuminating the Earth

Conference Publications

[1] <u>S. Farrar</u>, L. Jones, T. Kasparis, "Comparisons of Ocean Precipitation Measurements between SeaWinds and TRMM 3B42 Data Product", paper presented at IEEE International Symposium on Antennas & Propagation and USNC/URSI National Radio Science Meeting, June 1-5, 2009, Charleston, S.C.

[2] <u>S. Farrar</u>, L. Jones, S. Masuelli, J. Gallo, "Microwave Radiometer (MWR) Oceanic Integrated Rain Rate Algorithm for Aquarius/SAC-D", poster presented at the 11th Specialist Meeting on Microwave Radiometery and Remote Sensing of the Environment, March 1-4, 2010, Washington, D.C.

[3] *R. Amarin, S.El-Nimri, S.Biswas, <u>S. Farrar</u>, J. Johnson, L. Jones, "Enhancing Oceanic Retrievals using Microwave Radiometery", presented at the 2010 IGARSS, July 25-30, 2010, Honolulu, HI*

[4] <u>S. Farrar</u>, L. Jones, "Preliminary Analysis of the Aquarius/SAC-D Microwave Radiometer (MWR) Antenna Temperature: Possible Antenna Pattern Issue", presented at the 2012 IEEE SoutheastCon, Mar 15-18, 2012, Orlando, FL

[5] <u>S. Farrar</u>, M. Labanda, M. Jacob, S. Masuelli, S. Biswas, H. Raimondo, L. Jones, "An Empirical Correction for the MWR Brightness Temperature", IGARSS 2012, July 22-27, 2012, Munich, Germany

[6] T. Miller, M. James, J. Roberts, S. Biswas, E. Uhlhorn, R. Atlas, P. Black, L. Jones, J. Johnson, <u>S. Farrar</u>, S. Sahawneh, C.S. Ruf, M. Morris, "Observations of C-Band Brightness Temperature from the Hurricane Imaging Radiometer (HIRAD) on-board the NASA WB-57 during GRIP in Hurricanes Earl And Karl (2010)," *Fall Meeting, American Geophysical Union*, San Francisco, CA, 3-7 Dec., 2012

[7] *Timothy L. Miller, M. W. James, J. B. Roberts, S. Biswas, D. Cecil, W. L. Jones, J. Johnson, <u>S. Farrar</u>, C. S. Ruf, E. W. Uhlhorn, R. Atlas, and Peter G. Black, "Observations of C-band Brightness Temperatures and Ocean Surface Wind Speed and rain Rate from the Hurricane Imaging Radiometer (HIRAD) during GRIP and HS3," AMS 17th Conf on Integ. Observing and Assimilation Sys, Austin, TX, 6-10 Jan, 2013.*

Conference Publications

[8] *S. Sahawneh*, *S. Farrar*, *J. Johnson*, *L. Jones*, "Hurricane Wind Speed and Rain Rate Measurements using the Airborne Hurricane Imaging Radiometer (HIRAD)", presented at the 2013 IEEE SoutheastCon, Apr 4-7, 2013

[9] *T. Miller, M. James, J. Roberts, S. Biswas, D. Cecil, W. Jones, J. Johnson, <u>S. Farrar</u>, et al, "The Hurricane Imaging Radiometer: Present and Future,", IGARSS 2013, July 21-26, 2013, Melbourne, Australia*

[10] <u>S. Farrar</u>, L. Jones, "Estimation of TRMM Microwave Imager Antenna Temperature During Deep Space Calibration Maneuvers", 13th Specialist Meeting on Microwave Radiometery and Remote Sensing of the Environment, March 24-27, 2014, Pasadena, CA.

[11] <u>S. Farrar</u>, L. Jones, "GPM Microwave Imager On-Orbit Radiometric Calibration Using a Satellite Deep Space Calibration Maneuver", IGARSS 2014, July 13-18, 2014, Quebec, Canada

[12] M. Morris, C. Ruf, S. Biswas, <u>S. Farrar</u>, "A Coupled-Pixel Retrieval Algorithm for High Resolution Imagers", 95th AMS Annual Meeting, Phoenix, AZ, Jan 4-8, 2015

Journal Publications

[1] *S. Biswas,* <u>*S. Farrar, K. Gopalan, A. Santos-Garcia, L. Jones, S. Bilanow,* "Inter-Calibration of Microwave Radiometer Brightness Temperatures for the Global Precipitation Measurement Mission", IEEE Trans. GeoSci. & Rem Sens, Vol. 51, No. 3, March 2013</u>

[2] *M. Labanda, M. Jacobs, <u>S. Farrar</u>, L. Jones,* "MWR Smear Effect: A Countslevel Empirical Correction and Possible Causes", JSTARS - Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8. **Under Review**

NASA Project Presentation - XCAL

Orlando, FL – June 2010

• [1] <u>S. Farrar</u>, S. Biswas, W.L. Jones, "TMI With Respect to WindSat Over the Amazon", XCAL Science Team Meeting, June 29-30, 2010 Orlando, FL

Ashville, NC – October 2010

- [2] <u>S. Farrar</u>, W.L. Jones, S. Bilanow, K. Gopalan, C. Lyu, J. Shiue, "TMI Deep Space Calibration (DSC) Re-Analysis", XCAL Science Team Meeting 21-22 October 2010 Ashville, NC
- [3] <u>S. Farrar</u>, S. Biswas, L. Jones, K. Gopalan, "WindSat / AMSR-E Biases", XCAL Science Team Meeting October 21-22, 2010, Ashville, NC

College Park, MD – March 2010

- [4] <u>S. Farrar</u>, L. Jones, S. Bilanow, K. Gopalan, "AMSR-E Revisited", XCAL Science Team Meeting March 1-2, 2011 College Park, MD
- [5] S. Bilanow, K. Gopalan, <u>S. Farrar</u>, W.L. Jones, "Notes on Earth incidence Angle (EIA) Uncertainty Contribution to Tb Uncertainty", XCAL Science Team Meeting March 1-2, 2011 College Park, MD
- [6] <u>S. Farrar</u>, L. Jones, S. Bilanow, K. Gopalan, "TMI Deep Space Calibration (DSC) Gain and Offset Relationship Update Status", XCAL Science Team Meeting March 1-2, 2011 College Park, MD
- [7] <u>S. Farrar</u>, L. Jones, S. Bilanow, K. Gopalan, "Uncertainty Estimate for UCF XCAL Biases", XCAL Science Team Meeting March 1-2, 2011 College Park, MD

Fort Collins, CO – July 2011

- [8] S. Bilanow, K. Gopalan, <u>S. Farrar</u>, W.L. Jones, "Notes on GMI Alignment", XCAL Science Team Meeting July 13-14, 2011 Fort Collins, CO
- [9] <u>Spencer Farrar</u>, "TMI TB Striping Analysis", XCAL Science Team Meeting July 13-14, 2011 Fort Collins, CO
- [10] <u>S. Farrar</u>, "TMI Gyro-Hold Status Update Using STK", XCAL Science Team Meeting July 13-14, 2011 Fort Collins, CO

Denver, CO – November 2011

- [11] *S. Farrar*, *S. Aslebagh*, *W.L. Jones*, *S. Bilanow*, "The Effects of TMI 1B11 V7 Solar Beta/Time Varying Bias Correction on 2A12 Rain Rates", XCAL Science Team Meeting November 5-6, 2011 Denver, CO
- [12] <u>S. Farrar</u>, A. Santos-Garcia, W.L. Jones, S. Bilanow, "TMI/SSMI Biases (F13, F14, & F15)", XCAL Science Team Meeting November 5-6, 2011 Denver, CO

Ann Arbor, MI – July 2012

- [13] W.L. Jones, A. Santos-Garcia, S. Aslebagh, <u>S. Farrar</u>, Y. Hejazin, "Microwave Radiometer (MWR) on Aquarius X-Cal Update", XCAL Science Team Meeting July 11-12, 2012 Ann Arbor MI
- [14] <u>S. Farrar</u>, A. Santos-Garcia, W.L. Jones, "Further Analysis on TMI/SSMI Biases (F13 through F15)", XCAL Science Team Meeting July 11-12, 2012 Ann Arbor MI
- [15] <u>S. Farrar</u>, W.L. Jones, "SSMIS-TMI XCAL Cold End Analysis (F16 through F18)", XCAL Science Team Meeting July 11-12, 2012 Ann Arbor MI

NASA Project Presentation - XCAL Cont'd

Orlando, FL – February 2013

- [16] S. Farrar, W.L. Jones, "AMSR2-TMI XCAL Cold End Analysis", ٠ XCAL Science Team Meeting, February 21-22, 2013 Orlando, FL
- [17] S. Farrar, W.L. Jones, "Steps Towards Conventions Within ٠ XCAL", XCAL Science Team Meeting, February 21-22, 2013 Orlando, FL

Toulouse, France – May 2013

- [18] W.L. Jones, H. Ebrahimi, S. Farrar, "TMI to MADRAS X-CAL ٠ Colde End Analysis", XCAL Science Team Meeting, May 23-24, 2013 Toulouse, France
- [19] S. Farrar, A. Santos-Garcia, W.L. Jones, "Further Analysis on ٠ TMI/SSMI Biases (F13 through F15)", XCAL Science Team Meeting, May 23-24, 2013 February 2013 Toulouse, France

Fort Collins, CO – August 2014

- [20] S. Farrar, W.L. Jones, "TMI-AMSR2 XCAL Cold & Warm End ٠ Analysis", XCAL Science Team Meeting, August 22-23, 2014 Fort Collins, CO
- [21] S. Farrar, M. Salemin, W.L. Jones, "SSMI-TMI Cold & Warm • End Analysis (F13 through F15)", XCAL Science Team Meeting, August 22-23, 2014 Fort Collins, CO
- [22] S. Farrar, R. Chen, W.L. Jones, "SSMIS-TMI Cold & Warm ٠ End Analysis (F16 through F18)", XCAL Science Team Meeting, August 22-23, 2014 Fort Collins, CO

College Park, MD – July 2014

[23] S. Farrar, H. Ebrahimi, W.L. Jones, "GMI Anomalies", XCAL Science Team Meeting, July 10-11, 2014 College Park, MD

Orlando, FL – February 2015

- [24] S. Farrar, W.L. Jones, "TMI Cold Sky Anomaly", XCAL Science Team Meeting, February 28-29, 2015 Orlando, FL
- [25] S. Farrar, W.L. Jones, "GMI Second Stokes Analysis Using a Nadir-Look Maneuver", XCAL Science Team Meeting, February 28-29, 2015 Orlando, FL

Other NASA Project Presentations

[1] *L. Jones, K. Ahmad , <u>S. Farrar</u>, T. Kasparis, "Ocean Precipitation Measurements using SeaWinds", poster presented at the NASA Ocean Vector Winds Science Team Meeting, Nov 19-21, 2008, Seattle, WA*

[2] *L. Jones, S. AlSweiss, <u>S. Farrar</u>, S. Masuelli, and H. Raimondo,* "Microwave Radiometer (MWR) Contributions to Aquarius Science: Ocean Vector Winds & Ocean Precipitation Retrievals", poster presented at the 4th AQUARIUS/SAC-D Int. Science Workshop, Dec 3-6, 2008, Argentina

[3] <u>S. Farrar</u>, L. Jones, R. Menzerotolo, S. Masuelli, M.M. Jacob, C. Tauror, H. Raimando, "Microwave Radiometer (MWR) Oceanic Integrated Rain Rate Algorithm for Aquarius/SAC-D", poster presented at the 2010 Aquarius/SAC-D Science Team Meeting, July 19-21, 2010, Seattle, WA

[4] *L. Jones, S. Bilanow,* <u>S. Farrar</u>, *S. Aslebagh,* "The Effects of TMI 1B11 V7 Solar Beta/Time Varying Bias Correction on 2A12 Rain Rates", poster presented at the 2011 PMM Science Team Meeting, Nov 7-11, 2011, Denver, CO

[5] *L. Jones and <u>S. Farrar</u>, "MWR Tb Anomaly: Antenna Pattern Effects", AQ Cal/Val meeting, Nov. 15-17, 2011, Pasadena, CA*

[6] <u>S. Farrar</u> and L. Jones, M. Labanda, March Jacobs and Sergio Masuelli, "MWR Tb Anomaly: Smear Effect", Aquarius Cal/Val meeting, March 27-28, 2012, Santa Rosa, CA.

[7] *M. Labanda, M. Jacob, S. Masuelli, <u>S. Farrar</u>, H. Raimondo, W.L. Jones, "MWR Smear Effect: Analysis and Its Possible Correction", 7th Aquarius/SAC-D Science Meeting Preliminary Agenda 11-13 April 2012 Buenos Aires, Argentina*

[8] L. Jones, S. Datta, <u>S. Farrar</u>, A. Santos-Garcia, and H. Ebahimi[,] "Inter-Satellite Microwave Radiometric
Calibration for the GPM Constellation," NASA PMM Internat. Science Team meeting, Annapolis, MD, March 20, 2013

Acknowledgements

- <u>Yimin Ji</u> (PPS)
 - Providing 1A11 & Base files and related material
- James Shiue (SGT Inc)
 - Providing insight of the instrument from our discussions & obtaining documents & data of TMI
- <u>Steve Bilanow</u> (PPS)
 - Helping resolve geolocation errors, questions, understanding of the inertial-hold, and help with reading the 1A11 data product
- Second Stokes Analysis
 - <u>Rachael Kroodsma</u> (PPS) for providing converted RSS Surface Emissivity Matlab Code
 - <u>Wes Berg</u> (CSU) for providing Fortran Code that contains XCAL atmospheric & RSS' new surface emissivity model to account for wind direction
- <u>Shannon Brown</u> (JPL)
 - Providing insight on his effective conductivity work with reflectors
- <u>RSS</u> for providing their Surface Emissivity Model (Fortran) to the XCAL group
- <u>Tom Wilheit</u>
 - For being an influential proponent for CAMS for the TMI & GMI instruments

Thank You!

Back Up Slides

Backup Slides Setup

• Analyzes that Were Removed Due to Time Constraints

- TMI Main Beam Width (<u>Link</u>)
- TMI Main Beam Boresight (<u>Link</u>)
- Along-scan Bias (<u>Link</u>)
- Actual Backups
 - Intro (<u>Link</u>)
 - Beam Width (<u>Link</u>)
 - Beam Pointing (<u>Link</u>)
 - Along-scan Bias (<u>Link</u>)
 - Second Stokes (<u>Link</u>)
 - Emissivity (<u>Link</u>)
 - Backups From Proposal (<u>Link</u>)

Analyses that Were Removed Due to Time Constraints

Analysis

TMI Main Reflector Beamwidth

Illustration of Nadir Angle

TMI's IFOV While Leaving Earth

Example of $|\Delta T_A|$

DSV Transitions Geolocated

Note: Only half of transition is shown since other have views space
Amplitude of ΔT_A

Beamwidths

(c)

CSU values are from "The Tropical Rainfall Measuring Mission (TRMM) Sensor Package" (1998)

CFRSL

Conclusion & Future Work

- This analysis uses the edge of the earth, a sharp transition in TB (Ex: ~Δ240 K @ 10V-pol) for calculating TMI BW in the elevation plane
- H-Pol channels have the largest variation
- Disagreement between mean BW are largest for 10.65 GHz channels for Transition 1 to CSU & CDR beam widths
 - 10V: CSU (Δ=0.12°), CDR (Δ=0.15°)
 - 10H: CSU (Δ=0.35°), CDR (Δ=0.60°)
- Future Work To Be included in the Dissertation
 - Include multiple scan positions so to reduce the variance as well as more sample points for the 10.65 GHz channels to improve the mean (refer to <u>back-up</u> for examples)

Analysis

TMI Main Beam Boresight

Main Reflector Boresight

- Method:
 - Follows similar method as Beamwidth analysis except:
 - interested in when the boresight (peak of the secondary radiation pattern) passes the Earth's horizon
 - angle between boresight & geodetic nadir (nadir angle) is used for comparisons
- It is understood that TMI's MR boresight for 11 GHz channels are misaligned compared to the multi-frequency feed

Channels	Offsets from Shiue Memo (deg)		Offsets from TMI Subsystem Test Doc (deg)	
	Along-Track	X-Track	Along-Track	X-Track
10.65 V	0.555	-0.185	0.487	0.09
10.65 H	0.185	0.555	0.568	0.134

– But by how much is in question?

Boresights w.r.t. Nadir Angle

Channel: 21V, Bm Cntr: 71.68

Channel: 37V, Bm Cntr: 71.71

Nadir Dependence on Scan Position 19 V-pol

Concave Transitions

Convex Transitions

Conclusion & Future Work

- There are differences in the Nadir Angles for 10 V- & H-pol
 - Largest in 10 V for Concave but disappears for the convex case
 - There should be an offset in the along-scan direction which justifies why we don't see a difference in angle for convex cases
- Future Work To Be included in the Dissertation
 - Use STK or TMI geolocation code to determine match the nadir angles for the convex & concave cases
- Future Work: Post Dissertation
 - Use March 2015 maneuvers, Yaw 90°, to better estimate this angle in the along-scan direction

Analysis

Along-scan Bias

T_A (19 V-pol) Earth Contamination (Spillover) for DSV 1-6

Kelvin

CFRSL

Deep Space Views for 19 V-Pol TA

Deep Space Views for 19 V-Pol

Deep Space Views for 19 V-Pol

DSCM Sets

Limited Range Data

Scan Position

Conclusion & Future Work

- Along-scan analysis is in good agreement with RSS' (2001) analysis but this depends on channel
- Back-lobe / Spillover is present in this analysis and is obvious at an NSA angle of ~133°
 - Depending on channels can be up to 1.0 K for a given scan position
- Future Work: Post Dissertation
 - Include Year 2015 maneuvers into this analysis

Extra Slides

Back Up

Intro

Gain & Offset for All TMI Channels

TMI Orbit 601

Two Point Calibration CFRSL Hot Point Radcount_{hot} ~ 350 K Radcount Earth Scene Count Gain Radcount_{cold} Cold Point = 2.73 KEarth Scene Offset Tb_{cold} Tb_{hot} Τ_Α Antenna Temperature, K

TRMM Microwave Imager (TMI)

Compliments of Dave Kunkee

TMI SAMPLING PATTERN

HUGHES

·---

SSM/I CDR

265

3-15

3-14

Back Up

Beam Width

Transition 1

10

0.4 L

4

6

DSC Maneuvers

8

DSCM 2, Transition 1

11 GHz Channels

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

DSCM 2, Transition 1

19 GHz Channels

18

16

14

12

10

8

4

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

100

107

100
DSCM 2, Transition 1

21 GHz Channel

DSCM 2, Transition 1

37 GHz Channels

25

20

15

10

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

DSCM 2, Transition 1

86 GHz Channels

45

40

35

30

25

20

15

10

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

110

Back Up

Boresight Pointing

TMI Boresight Table

Channels	Offsets from Shiue Memo (deg)		Offsets from TMI Subsystem Test Doc (deg)	
	Along-track	X-Track	Along-Track	X-Track
10.65 V	0.555	-0.185	0.487	0.09
10.65 H	0.185	0.555	0.568	0.134
19.35 V	0	0	0.06	0.005
19.35 V	0	0	0.05	0.005
21.30 V	0	0	0.059	-0.025
37.00 V	0	0.1	0.073	-0.006
37.00 H	0.1	0	0.069	-0.001
85.50 V	0.1	0	0.049	-0.030
85.50 H	0.05	0.05	0.065	-0.010

TMI Subsystem Test Doc: Nov 07, 1994 (Outdoor test range) Shiue Memo: 12-11-1997 (Measured by Hughes)

Convex & Concave Comparisons for 19 V-pol (DSCMs 1 to 10)

Back Up

Along-scan Bias

This is Wentz' Along-scan bias analysis for TMI's 9 channels. Comparison of the average along-scan error derived from ocean observations and from deep-space observations. The observed T_A anomaly is plotted versus scan position. The solid black and gray curves come from ocean observations for yaw orientations of 0 and 180, respectively, during 1998. The dashed curves come from deep-space observations during January 1998

Along Scan Bias

Full Range Data for DSCM Set 1

19 V-pol

Insensitivity of Along-Scan Analysis to Reconstruction Errors

Combined DSC Sets

Limited Range Data Bars length = 1σ

DSCM Set 2 – Averaged w.r.t. NSA

DSCM Set 3 – Averaged w.r.t. NSA

Comparing Biases for Range of Scans

Back Up

Second Stokes Analysis

SS Analysis Over Ocean Flow Chart

Before & After Correction: 11 GHz

Sweeping Through Nadir

High Res Scan Angle Increment: 0.63°

Thinking of

Removing

CFRSL

Thinking of Removing

11 GHz

Geolocation of Q Over Land

Back Up

Emissivity

Angles Feed Horn is Defined As

Empirical Method Flow Chart

Orbits: 641 & 642 (Ocean)

Orbits: 641 & 642 (Land) CFRSL TMI T_B Mask Nominal EIA 0 -5 295 -10 290 Latitude -15 285 -20 280 -25 275 -30 -35 L 270 150 50 100 Longitude **Different color scale** TMI T_B during DSC Maneuver 0 280 -5 260 -10 240 Latitude -15 220 -20 200 -25 180 -30 160 -35 L 50 100 150 Longitude

EIA of Spillover

Matching Simulated T_A to Truth: 10V

GMI MR Physical Temperature: Inertial Holds

Dec 09, 2014 Maneuvers

GMI MR Physical Temperature: Normal Orbit

Determining Conductivity

Reasons for Disagreement in Conductivity

- Reconstructed TA is imperfect
- Scan Angle Bias is not corrected for
- There can be an entire TB offset that we are not correcting for
- Imperfections in the Spillover Map maybe use ERA-I
- Polarization Rotation should be corrected in while using the Spillover Map?
- Feed Horn Pattern is not correct
- 10 GHz feed horn squint angle is not applied

Why I Believe Sun Intrusion into the Warm Load Occurs

BackUps From Proposal

Cosmic Background

Notes 2:

- Cosmic Microwave Background (CMB)
 - <u>Thermal radiation left over from the Big Bang of cosmology</u>, i.e., radiation left over from an early stage in the development of the universe</u>
 - Is a cosmic background radiation that is fundamental to observational cosmology because it is the <u>oldest light in the universe</u>