OCEAN BRIGHTNESS TEMPERATURE MEASUREMENTS USING THE
QUICKSCAT RADIOMETER

by

RUSHAD J. MEHERSHAHI

B.S.E.E. University of Mumbai, 1996

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science
in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science
at the University of Central Florida
Orlando, Florida

Summer Term

2000

Major professor: Dr. W. Linwood Jones
ABSTRACT

The SeaWinds instrument on the QuikSCAT satellite is a special purpose radar remote sensor known as a scatterometer. This scatterometer is designed to measure the scattering characteristics of the earth’s surface to infer ocean surface wind vector and other geophysical parameters. This thesis presents the novel use of the radar receiver as a total power radiometer to measure the brightness temperature (blackbody emission) of the Earth.

The derivation of a Radiometric Transfer Function Model is presented for the QuikSCAT Radiometer (QRad) that is used to calculate the apparent brightness temperature collected simultaneously with the radar scattering measurement. Analysis results are presented for on-orbit measurements to derive transfer function parameters, and the model performance in producing brightness temperatures is assessed by comparisons with near-simultaneous brightness temperature measurements from an independent microwave radiometer, the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). These results demonstrate the utility of Qrad obtaining good quality brightness temperature measurements especially over the oceans.
ACKNOWLEDGMENTS

This thesis was a great accomplishment on my part and it gave me the confidence to meet the challenges of a working environment when I got my first job as a Masters student. I would like to give a special thanks to my advisor Dr. Linwood Jones for his guidance, support and time. I am thankful to my team members for their assistance during the challenging stages of my thesis. I am grateful to my committee, Dr. Takis Kasparis and Dr. Michael Georgiopoulos for their time and interest in my work. Also I would like to thank my wife Radonda for her motivation, support and patience and her parents Mr. and Mrs. Dobbins for their well wishes and support.

This work was sponsored under a grant with The QuikSCAT Project of the Jet Propulsion Laboratory.
TABLE OF CONTENTS

List of Tables ..v
List of Figures ..vi
Chapter 1. Introduction ..1
Chapter 2. Radiometric Transfer Function ..5
Chapter 3. Qrad Absolute Brightness Temperature Calibration using TMI20
Chapter 4. Conclusion ..45
Appendix A – Radiative Transfer Brightness Model ...49
Appendix B – Derivation of Qrad Instrument Parameters from On-orbit Measurements.60
Appendix C – Total Power Radiometer ..77
List of References ..83
LIST OF TABLES

Table 3.1. Spectral Ratio Calculation ...22
Table 3.2. UCF & REMSS Brightness Temperature Model Comparison23
Table B.1. Noise Channel Gain Calculation ..65
Table B.2. On-Orbit Parameter Calculation using Space Only Data69
Table B.3. On-Orbit Parameter Calculation using Ocean Viewing Data69
Table B.4. On-Orbit Parameter Calculation using Amazon Viewing Data70
Table B.5. Calculation for \(\varepsilon \) ...72
Table B.6. Constants and Instrument Parameter Table76
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>SeaWinds Scatterometer Geometry</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>QuikSCAT Radiometer Equivalent Block Diagram</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Brightness Temperature Measurement Boxes</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Regression Analysis on QRad and Equivalent Qrad from TMI</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Three-day Average QRad and Equivalent Qrad from TMI (H-pol)</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Three-day Average QRad and Equivalent Qrad from TMI (V-pol)</td>
<td>31</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparison of QRad Brightness Temperature with SSMI Rain Rate</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>TMI Land and Rain Mask</td>
<td>35</td>
</tr>
<tr>
<td>3.7</td>
<td>Difference Brightness Temperature Histograms (TMI-Qrad)</td>
<td>36</td>
</tr>
<tr>
<td>3.8</td>
<td>Comparison of WOM and ROM Equatorial Brightness Temperatures</td>
<td>39</td>
</tr>
<tr>
<td>3.9</td>
<td>Difference Brightness Temperature Histograms (ROM-WOM)</td>
<td>40</td>
</tr>
<tr>
<td>3.10</td>
<td>QRad H & V-pol Brightness Temperature over Identical Ocean Tracks</td>
<td>43</td>
</tr>
<tr>
<td>3.11</td>
<td>Qrad Brightness Temperature & Receiver Physical Temperature</td>
<td>44</td>
</tr>
<tr>
<td>A.1</td>
<td>Radiative Transfer Block Diagram</td>
<td>51</td>
</tr>
<tr>
<td>A.2</td>
<td>Layered Approximation of Atmospheric Density</td>
<td>55</td>
</tr>
<tr>
<td>B.1</td>
<td>Plot of Receiver Power Gain</td>
<td>65</td>
</tr>
<tr>
<td>B.2</td>
<td>Antenna Scan Geometry for Wind Observation Mode</td>
<td>67</td>
</tr>
<tr>
<td>B.3</td>
<td>Antenna Scan Geometry for Space Viewing Mode</td>
<td>67</td>
</tr>
</tbody>
</table>
Figure B.4. Time Series of Noise Energy DN’s in Space Viewing Mode68
Figure B.5. Space View Noise Energy DN’s vs Antenna Azimuth68
Figure B.6. SeaWinds SES Front-End Losses ..72
Figure B.7. Receiver Protect Switch Loss ..73
Figure B.8. Regression Curve for the Receiver Noise Figure75
Figure C.1. Total Power Radiometer Block Diagram79
Figure C.2. Calibration Diagram for a Total Power Radiometer82