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Dissertation Objective
• Validate the QuikSCAT Radiometer (QRad), 

microwave brightness temperature algorithm 
(JPL L2A product) 

• Perform inter-satellite radiometric calibration 
with the WindSat microwave radiometer
– Primary QRad Tb calibration over oceans during 

continuous sun-lighted orbits
• Establish absolute Tb measurement accuracy 

– Mean Tb biases relative to WindSat (standard)
• Establish radiometric precision 

– Measure noise equivalent delta-Tb (NEDT)
• Evaluate calibration stability

– Seasonal changes in QRad Tb biases
– Changes during eclipse periods (thermal transient case) 
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Dissertation Objective cont.
– Evaluate QRad Tb measurements over land

• Effects of radar echo subtraction
– Evaluate antenna pattern effects

• Sidelobe spill-over near land
• Land mask for ocean Tb

• Relate systematic Tb calibration biases to 
problems within the QRad Tb algorithm 
and recommend future improvements
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SeaWinds on QuikSCAT

• SeaWinds is a satellite-borne radar scatterometer 
used to remotely sense oceanic surface winds

– Launched June 1999 on the Quick Scatterometer 
(QuikSCAT) satellite

– Low Earth Polar Orbit:
• Sun-synchronous
• 98.6° inclination orbit
• Operating Freq. 13.4 GHz
• Incidence angles:

– 46° H-pol & 54° V-pol
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Microwave Scatterometry Geometry

54°

46°

Flight Direction

360°Azimuth Scan
H-PolV-Pol

Swath width 1800 km 

outer beam 
Inner beam

Nadir track

Cross track

• Scatterometer measurements are collected over 
360° of aziumth
– 25 km “wind vector cells” within overlapping swath 
– Radar measurements at 4 azimuth looks



66

QuikSCAT Radiometer (QRad) 
Apparent Brightness Temperature 

Algorithm
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QRad Brightness Temperature (Tb) 
Measurement

• SeaWinds is a radar scatterometer, which 
employs signal processing similar to a total 
power radiometer

• Post-launch, SeaWinds measurements were 
expanded to include Tb  and an oceanic rain 
flag 
– Algorithm developed by CFRSL and implemented 

by JPL in science data processing
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Scatterometer Measurement
• Signal power (radar echo) measured in “echo”

channel (high S/N) 
• Noise power measured in parallel “noise” channel 

(low S/N) 
• Noise chan subtracted from echo chan to yield the 

signal (surface backscatter power)
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Antenna Excess Noise Measurement

• Echo channel is subtracted from noise channel to yield the 
differential antenna noise (Excess Noise)
– Channel subtraction removes radar echo power
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SeaWinds Receiver (Radiometer) 
Simplified Block Diagram
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Effect of Losses on Tb

• Antenna temperature is the input to the 
radiometer receiver that includes:
– Surface brightness temperature collected by 

the antenna (Tap) 
– Noise emitted transmission line losses (front-

end losses, Lra)

Tant = Tap Lra + (1- Lra)Tphy
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Radiometer Transfer Function
• The measured radiometer output noise 

temperature equals the product of input 
(system noise temp) x (receiver gain)

Tsys = Tant + Trecvr

Tmeas= Tsys* Gain
Solving for

Tant= (Tmeas/ Gain) – Trecv

Tap = [Tant - (1- lra) Tphy]/ lra
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Integrated Excess Noise Power

Excess Noise (Nxi) energy is the weighted difference between 
the noise channel and echo channel integrated output power 

– p  = noise or echo chan output power
– Eni = noise channel energy, 
– Eei = echo channel energy
– i = “h” (inner beam) and = “v” (outer beam)
– β = gain ratio = Gnoise/Gecho

En =  pndt
0

τ

∫

Nxi ≈ niE − β * eiE( )            
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QRad First Tb Images

V-pol Tbap
at 54 deg incidence

H-pol Tbap
at 46 deg incidence



1515

Inter-satellite Radiometric 
Calibration 
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QRad Inter-satellite Radiometric 
Calibration

• QRad Tb Validation History
• TMI Tb Comparisons

• WindSat Tb Comparisons
• QRad Tb Biases during continuous Sun-
Lighted Orbits



17

QRad Tb Measurement Performance is not 
well Validated!

• QRad L2A Tb product quality is not well validated
– Algorithm tuning was preformed in 1999 using 

simultaneous ocean Tb comparisons with the TRMM 
Microwave Imager 

– Semi-annual QRad/TMI comparisons from Sept, 1999 -
April, 2003

• QRad Tb algorithm performed poorly when applied 
to SeaWinds on ADEOS-2 in an orbit with ~ 50% 
day/night operation

– Large Tb Biases (~ 10 K) were observed in the night-
side of the orbit

– Reason for algorithm failure was not determined
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My Dissertation Contributions
• Investigation of ADEOS-II QRad algorithm 

failure
• Development of MatLab version of QRad Tb 

algorithm
• Conduct of intensive QRad Tb validation

– Absolute accuracy
– Radiometric precision
– Calibration stability
– Land Tb evaluation
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Inter-satellite Radiometric 
Calibration (ocean)  

• Performed to assess the quality of QRad
radiometric (brightness temperature) L2A 
product

• Comparison of near-simultaneous ocean 
brightness temperature (Tb) between QRad
and WindSat
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Inter-satellite Radiometric Calibration 
March-ups 

• WindSat and QRad Tb’s match-ups
– 1° (lat x lng) boxes on monthly basis

• Primary calibration during continuous 
sun-lighted orbits 
– Aug 2005 and Feb 2006

• Secondary calibration during eclipse 
periods
– Nov 14, 2005  - Jan 30, 2006 
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Match-up Data Sets

•Match-ups within ±60 
minutes 
•Spatial 1° lat & lng boxes
•~ 200,000 # boxes/mo
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Typical Monthly QRad & WindSat Match-ups 
within ± 60 minutes
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• ~200,000 match-ups per month
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Tb Normalization

• WindSat Tb normalizations were required 
before QRad inter-comparisons were made
– QRad operates at 13.4 GHz @ 46° & 54˚
– WindSat operates at 10.7 GHz @ 50.3°

• Radiative Transfer Model (RTM) was used to 
transform the WindSat 10.7 GHz 
measurements to the QRad equivalent 
frequency and the incidence angles
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WindSat Normalization cont.

• Run RTM
– Calculate theoretical QRad Tb for environmental 

parameters (1°box)
• Tb(QS-perdicted)(fQS,ƟQS, WS,SST,WV,CLW  )

– Frequency = 13.4 GHz 
– Incidence angle = 54˚ (V-pol) & 46˚ (H-pol)

– Calculate theoretical WindSat Tb for environmental 
parameters (1°box) 

• Tb(WS-perdicted)(fWS,ƟWS, WS,SST,WV,CLW) 
– Frequency = 10.7 GHz  & Incidence angle = 50.3˚
– Incidence angle = 50.3˚ (V & H-pol)
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– Calculate the predicted (theoretical) Tb
difference  between QRad & WindSat

•delta = QRadpredicted – WSpredicted

Tb (Windsat_13.4Ghz) = WindSat (measured) + delta

Expected Delta Tb (QRad to WindSat)
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QRad Radiometric Bias

• QRad_ bias =  QRad (measured)   - Tb (Windsat_13.4Ghz)

– Tb (Windsat_13.4Ghz) is the equivalent QRad brightness 
temperature derived from Windsat

– QRad (measured) is the measured QRad brightness 
temperature  
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QRad Calibration Challenge - Large NEDT

•QRad radiometric precision or noise 
equivalent delta-T (NEDT) is large

– NEDT = 27 Kelvin for a single radar pulse
– NEDT = 11 Kelvin for L2A Tb in 25 km wind 

vector cell

•QRad Tb bias (mean values) calculated in 1°
boxes 

– To improve mean bias estimate, zonal 
averages are performed (over all longitudes 
and 5°latitude bins) to form a latitude series
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QRad Tb comparison with WindSat
Aug, 2005 & Feb, 2006
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QRad Tb Bias Separated by Asc & Desc
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QRad Radiometric Biases During the 
Eclipse-Period Nov’05 - Jan’06

• During eclipse, the SeaWinds instrument 
undergoes a significant transient physical 
temperature cooling (from sunlight to night)
• Previous experience of SeaWinds on 
ADEOS-II demonstrated large Tb biases 
during dark side of the orbit
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Typical QuikSCAT Ground Tracks
12 Hrs 12/21/05

60˚

60˚

During the sunlight

During the eclipse
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Eclipse period
11/14/05 through 1/30/2006
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A Time-Varying Radiometric Bias
During the eclipse and post-eclipse 

period (12/19/05-12/23/05)
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JPL Thermal Model Results: SeaWinds Antenna 
Physical Temperatures During Eclipse
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Characterize the radiometric bias for 
QRad during eclipse periods

• Front-end loses (L1B) = L1+L2+L3 = -1.06 dB,
– wave guide loss L3 = -0.24 dB 
– Microwave rotary joint loss (L2) = -0.18 dB. 
– Feed assembly loss (L1) = - 0.64 dB 

• or a power ratio of 0.863 

• The radiometric Tb bias introduced by this 
front-end loss during eclipse is:
– (∆Tb_bias) = (∆Tphy) x (1- loss ratio)

• (∆Tb_bias) = 95 x (1- 0.863) =~13 Kelvin
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QRad Tb Evaluation Over Land
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QRad validation over land 

• Differential energy calculation is more critical 
to radar echo cancellation over land 
– Provides a worst case scenario for evaluation of 

QRad transfer function 

• Evaluate the effects of radar echo subtraction 
on QRad’s Tb

– Excess Noise (Nx)  =  En – β*Ee
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Echo Energy

• Average echo energy is five times larger over land 
than over ocean
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QRad Tb comparison with WindSat

• QRad’s Tb’s were compared to  unadjusted 
Tb’s from WindSat (@10.7GHz )

• Land surfaces are electromagnetically rough 
and emissivities are usually high (> 80%)
– Change in Tb with incidence angle and frequency 

over 10 – 15 GHz range are usually small except for 
a small dc Tb offset

• Comparison was performed for five day 
average (Aug 1 through Aug 5)
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Average Tb over land (H&V-pol) 
(Aug 1-5) 

QRad’s Tb (H-Pol) WindSat’s Tb (H-pol)

WindSat’s Tb (V-pol)QRad’s Tb (V-Pol)
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Tb Bias Over Land 
(Aug 1-5) 

Delta Tb H-Pol Delta Tb V-pol

Amazon rainforest

Africa
rainforest

∆Tb = QRad - WindSat = Tb bias (H & V-pol)
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Comparison Observations  

• Systematic differences over large regions of 
desert, vegetated land, and sea ice
– ∆Tb ~ -10 K (colder) over rainforest 
– ∆Tb ~ +15 K (warmer) Over deserts

• Tb differences are may be caused by 
– Geophysical (dielectric) property differences
– Instrumental effects
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Instrumental Effect

• Instrumental effect can be easily examined by 
cross-correlating the echo channel energy 
(sigma-0) and QRad Tb bias ∆Tb

– Effect of residual echo channel energy after 
subtraction on the ∆Tb

– Echo channel energy is directly proportional to 
radar cross section(Sigma-0)
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Effects of radar echo subtraction (cont.)

• Tb transfer function was examined

– QRad Tb is proportional to the excess noise (Nx)

• SeaWinds L2A data product was used to get 5 days 
averages of σo
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Surface Radar Cross Section (σo)
(Aug 1-5) 

Sigma0 H-pol Sigma0 H-polSigma0 H-Pol Sigma0 V-Pol

Amazon

Africa 
rainforest

– Sigma-0 is high over the tropical rainforest 
– Sigma-0 is low over deserts
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Surface Radar Cross Section Analysis

• Images of sigma-0 and ∆Tb are anti-correlated 
– high sigma-0 correlated with low ∆Tb bias and vice 

versa
– Cross-correlation analyses were performed 

• ∆Tb versus sigma-0 for land

– Data were averaged using 0.01 sigma-0 bins to 
establish the mean trend for both polarizations 
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Comparison of delta Tb and sigma-0 Over 
Land (H-pol) (Aug 1-5) 
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Scatter diagram for delta Tb and sigma0 
(V-pol) (Aug 1-5) 
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Tuning QRad Transfer Function 
Coefficient (β) 
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Tuning QRad Transfer Function

• QRad transfer function optimized to 
remove dependence of Tb on echo 
channel energy

• The optimum value for β makes the Tb 
bias over land independent of sigma-0 
– β parameter is the gain ratio = Gnoise/Gecho
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CFRSL MatLab Code Development 

• JPL’s QRad Tb algorithm processing code 
was not available to tune the QRad 
transfer function parameters (β)

• A MatLab version of QRad Tb algorithm was 
developed
– Algorithm input: JPL L1A and L1B data files
– Algorithm output: equivalent L2A Tb’s
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QRad Tb Differences over 25 km boxes: 
CFRSL - JPL

Mean value =    -3.6113
STD            =    26.7254

Mean value  = -3.8301
STD             = 28.5683
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Tuning Beta 

• Five days (~75 revs) L2A Tb’s processed 
• QRad transfer function was optimized by 

parametrically adjusting β value
– Beta parameter varied from 2.900 to 2.920
– Delta Tb = QRad_modeled – WindSat

• QRad_modeled is generated from L1A andL1B

• The optimum value was found to be 2.914 
(instead of previously determined 2.917)
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Beta Optimization Results
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Summary and Conclusion

• The QRad microwave brightness 
temperature algorithm (JPL L2A product) 
has been validated

• Inter-satellite radiometric calibration with 
WindSat was performed
– QRad Tb calibration over oceans during 

continuous sun-lighted orbits
• Absolute measurement accuracy

– ± 2 K Mean Tb biases relative to WindSat (standard)
• The radiometric precision (NEDT)

– 15 K (V-pol) & ~12 Kelvin (H-pol) 
• Evaluate calibration stability

– Small seasonal changes in QRad Tb biases (< 2 - 4 K) 
– Major changes during eclipse periods
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Summary and Conclusion

• Changes during eclipse periods (thermal transient 
case)
– Biases are variable during eclipse orbits

• Max QRad bias ~ - 13 K (too low) coming-out of eclipse
• Cause is error in assumed antenna front-end loss physical 

temperature
• Bias transient starts at eclipse and ends ~ orbit/4 post-eclipse

• Ocean Tb near land was evaluated
– Must use conservative mask of ~ 400 km from land

• Tb over land was evaluated
– Discovered systematic Tb calibration biases
– Biases correlated withland sigma-0 

• QRad Tb algorithm future improvements
– Beta parameter set to 2.914 for the next version of the QRad Tb 

algorithm
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Backup Charts
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QRad/WindSat Ocean Radiometric 
Calib:

- Sun-lighted Orbits
- Eclipse
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Characterize the radiometric bias for 
QRad during sun-lighted orbits

• To investigate the cause for this systematic Tb 
difference between QRad and Windsat, the 
radiometric bias was examined separately for 
ascending (asc) and descending (dec) portions of the 
orbit.

• zonal averages were performed, using 5° latitude 
bins (to compensate for the reduced number of 
samples) to form a latitude series, which preserved 
the once per orbit pattern of radiometric biases. 
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Cause of radiometric bias: Examine QRad
transfer function

• QRad’s Tb were colder than the WindSat’s Tb in the southern 
hemisphere by ~2K and warmer in the northern hemisphere by 
~2-3 K for both H- and V-pol

• Ascending and descending portions track each other with 
latitude, and the difference is generally within ± 1 K.

• This is a very favorable result in that the biases are nearly 
identical with relative orbit time (latitude) and stable during 
the continuous sun-lighted orbits for both winter and summer

• This supports the notion that the bias is a common-mode 
effect within the QRad Tb algorithm and eliminates the 
possibility that the cause is related to ascending and 
descending effects, which are manifested in a local time of 
day phenomenon for the ocean Tb’s.
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Possible Causes for Systematic Tb 
Biases versus Lat

Hypothesis:
• The orbital variation in receiver (noise) 

temperature (Tr) could cause the observed Tb 
bias pattern

Tant= Tsys- Tr

Tr = f(To)
Where

To is the receiver physical temp
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QRad Radiometric Calibration During the 
Eclipse-Period

• During these periods, the SeaWinds instrument 
undergoes a significant physical temperature 
cooling transient (from sunlight to night) 

• To assess the quality of the QRad during the 
eclipse period, zonal averages were performed 
over longitude using 5˚ latitude bins Latitude 
series were created, and monthly averages for 
month (January)
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QRad Tb-Bias during the eclipse period 
(cont.)

QRad Tb bias (during eclipse period) for January 2006
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TRMM Microwave Imager Tb Bias
• Similar Tb orbital bias pattern was observed during 

the TMI inter-satellite radiometric calibration as 
reported by Gopolan et al.
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Antenna Pattern Sidelobe Spill-
over Effects on Ocean Tb
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Antenna Pattern Effects on Ocean 
Brightness Temperatures

• Because SeaWinds is a radar, its antenna 
pattern was designed to provide spatial 
resolution and not the high beam efficiency 
usual for radiometer antennas

• significant “Tb contamination” for pixels near land
• QRad radiometric biases ( Qrad - Windsat at 

13.4GHz) in 0.25° pixels for a ten-day period 
in (August 2005) along the west coast of North 
America
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Antenna Pattern Effects on Ocean 
Brightness Temperature (cont.)
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Noise Equivalent Differential 
Temperature (NEDT) 

I
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Noise Equivalent Differential 
Temperature (NEDT)

• The noise equivalent differential temperature 
(NEDT) is a measure of the sensitivity of the 
measured Tb to changes in the scene 
brightness, NEDT was estimated by:
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Gain Variation in one orbit 
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QRad STD for August
STD_V=15.59 & STD_H=12.52 
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Standard Deviation Stability
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QRad Tb Evaluation over Land
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QRad Tb over Land: Effects of radar echo 
subtraction

• Before subtraction, the echo channel gain must first be 
normalized to the noise channel gain, then the signal power 
may be exactly cancelled in the noise channel by subtraction

• If the gain normalization factor (β) is in error
– there will be a residual signal left (too much or too little)
– Further, this residual will be proportional to the signal power

• Over ocean, the radar echo channel energy is small compared 
to the system noise power
– Tb bias is also small. 

• Over land, the radar echo energy is much larger and the 
residual signal after subtraction is likewise larger than the 
ocean case; so the Tb bias will depend upon the beta and the 
radar echo energy
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Tb Comparison over Land

Tb(WindSat) Tb (QRad)

Tb comparison

Bias Tb
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