Validation of QuikSCAT Radiometer (QRad) Microwave Brightness Temperature Measurements

Rafik Hanna PhD Defense June 8, 2009

Dissertation Objective

- Validate the <u>QuikSCAT Radiometer</u> (QRad), microwave brightness temperature algorithm (JPL L2A product)
- Perform inter-satellite radiometric calibration with the WindSat microwave radiometer
 - Primary QRad Tb calibration over oceans during continuous sun-lighted orbits
 - Establish absolute Tb measurement accuracy
 - Mean Tb biases relative to WindSat (standard)
 - Establish radiometric precision
 - Measure noise equivalent delta-Tb (NEDT)
 - Evaluate calibration stability
 - Seasonal changes in QRad Tb biases
 - Changes during eclipse periods (thermal transient case)

Dissertation Objective cont.

- Evaluate QRad Tb measurements over land
 - Effects of radar echo subtraction
- Evaluate antenna pattern effects
 - Sidelobe spill-over near land
 - Land mask for ocean Tb
- Relate systematic Tb calibration biases to problems within the QRad Tb algorithm and recommend future improvements

SeaWinds on QuikSCAT

- SeaWinds is a satellite-borne radar scatterometer used to remotely sense oceanic surface winds
 - Launched June 1999 on the Quick Scatterometer (QuikSCAT) satellite
 - Low Earth Polar Orbit:
 - Sun-synchronous
 - 98.6° inclination orbit
 - Operating Freq. 13.4 GHz
 - Incidence angles:
 - 46° H-pol & 54° V-pol

Microwave Scatterometry Geometry

- Scatterometer measurements are collected over 360° of aziumth
 - 25 km "wind vector cells" within overlapping swath
 - Radar measurements at 4 azimuth looks

QuikSCAT Radiometer (QRad) Apparent Brightness Temperature Algorithm

QRad Brightness Temperature (Tb) Measurement

- SeaWinds is a radar scatterometer, which employs signal processing similar to a total power radiometer
- Post-launch, SeaWinds measurements were expanded to include T_b and an oceanic rain flag
 - Algorithm developed by CFRSL and implemented by JPL in science data processing

Scatterometer Measurement

- Signal power (radar echo) measured in "echo" channel (high S/N)
- Noise power measured in parallel "noise" channel (low S/N)
- Noise chan subtracted from echo chan to yield the signal (surface backscatter power)

Antenna Excess Noise Measurement

- Echo channel is subtracted from noise channel to yield the differential antenna noise (Excess Noise)
 - Channel subtraction removes radar echo power

SeaWinds Receiver (Radiometer) Simplified Block Diagram

Effect of Losses on T_b

- Antenna temperature is the input to the radiometer receiver that includes:
 - Surface brightness temperature collected by the antenna (T_{ap})
 - Noise emitted transmission line losses (frontend losses, L_{ra})

$$T_{ant} = Tap L_{ra} + (1 - L_{ra})T_{phy}$$

Radiometer Transfer Function

• The measured radiometer output noise temperature equals the product of input (system noise temp) x (receiver gain)

$$T_{ant} = (T_{meas} / Gain) - T_{recv}$$
$$Tap = [T_{ant} - (1 - I_{ra}) T_{phy}] / I_{ra}$$

Integrated Excess Noise Power

Excess Noise (N_{xi}) energy is the weighted difference between the noise channel and echo channel integrated output power

$$E_{n} = \int_{0}^{t} p_{n} dt$$
$$N_{xi} \approx \left(E_{ni} - \beta * E_{ei} \right)$$

- *p* = noise or echo chan output power
- E_{ni} = noise channel energy,
- E_{ei} = echo channel energy
- i = "h" (inner beam) and = "v" (outer beam)

$$-\beta$$
 = gain ratio = G_{noise}/G_{echo}

QRad First Tb Images

V-pol T_{bap} at 54 deg incidence

First QuikSCAT V-pol Brightness Temperature Image - Rev 402 & 403

H-pol T_{bap} at 46 deg incidence

Inter-satellite Radiometric Calibration

QRad Inter-satellite Radiometric Calibration

- QRad Tb Validation History
 - TMI Tb Comparisons
- WindSat Tb Comparisons
 - QRad Tb Biases during continuous Sun-Lighted Orbits

QRad Tb Measurement Performance is not well Validated!

- QRad L2A Tb product quality is not well validated
 - Algorithm tuning was preformed in 1999 using simultaneous ocean Tb comparisons with the TRMM Microwave Imager
 - Semi-annual QRad/TMI comparisons from Sept, 1999 -April, 2003
- QRad Tb algorithm performed poorly when applied to SeaWinds on ADEOS-2 in an orbit with ~ 50% day/night operation
 - Large Tb Biases (~ 10 K) were observed in the nightside of the orbit

- Reason for algorithm failure was not determined

My Dissertation Contributions

- Investigation of ADEOS-II QRad algorithm failure
- Development of MatLab version of QRad Tb algorithm
- Conduct of intensive QRad Tb validation
 - Absolute accuracy
 - Radiometric precision
 - Calibration stability
 - Land Tb evaluation

Inter-satellite Radiometric Calibration (ocean)

- Performed to assess the quality of QRad radiometric (brightness temperature) L2A product
- Comparison of near-simultaneous ocean brightness temperature (Tb) between QRad and WindSat

Inter-satellite Radiometric Calibration March-ups

- WindSat and QRad Tb's match-ups
 - 1° (lat x Ing) boxes on monthly basis
- Primary calibration during continuous sun-lighted orbits
 - Aug 2005 and Feb 2006
- Secondary calibration during eclipse periods
 - Nov 14, 2005 Jan 30, 2006

Match-up Data Sets

Typical Monthly QRad & WindSat Match-ups within ± 60 minutes

~200,000 match-ups per month

Tb Normalization

- WindSat *Tb* normalizations were required before QRad inter-comparisons were made
 - QRad operates at 13.4 GHz @ 46° & 54°
 - WindSat operates at 10.7 GHz @ 50.3°
- Radiative Transfer Model (RTM) was used to transform the WindSat 10.7 GHz measurements to the QRad equivalent frequency and the incidence angles

WindSat Normalization cont.

- Run RTM
 - Calculate theoretical QRad T_b for environmental parameters (1°box)
 - $T_{b(QS-perdicted)}(f_{QS}, \Theta_{QS}, WS, SST, WV, CLW$)
 - Frequency = 13.4 GHz
 - Incidence angle = 54° (V-pol) & 46° (H-pol)
 - Calculate theoretical WindSat T_b for environmental parameters (1°box)
 - $T_{b(WS-perdicted)}(f_{WS}, \Theta_{WS}, WS, SST, WV, CLW)$
 - Frequency = 10.7 GHz & Incidence angle = 50.3°
 - Incidence angle = 50.3° (V & H-pol)

Expected Delta T_b (QRad to WindSat)

- Calculate the predicted (theoretical) $\rm T_b$ difference between QRad & WindSat

• delta = $QRad_{predicted} - WS_{predicted}$

T_{b (Windsat_13.4Ghz)} = WindSat (measured)</sub> + delta

QRad Radiometric Bias

- $QRad_bias = QRad_{(measured)} T_{b_{(Windsat_{13.4Ghz)}}}$
 - T_{b (Windsat_13.4Ghz)} is the equivalent QRad brightness temperature derived from Windsat
 - QRad (measured) is the measured QRad brightness temperature

QRad Calibration Challenge - Large NEDT

- QRad radiometric precision or **noise** equivalent delta-T (NEDT) is large
 - NEDT = 27 Kelvin for a single radar pulse
 - NEDT = 11 Kelvin for L2A Tb in 25 km wind vector cell
- QRad Tb bias (mean values) calculated in 1° boxes
 - To improve mean bias estimate, zonal averages are performed (over all longitudes and 5°latitude bins) to form a latitude series

QRad Tb comparison with WindSat Aug, 2005 & Feb, 2006

QRad Tb Bias Separated by Asc & Desc

CFRSL

QRad Radiometric Biases During the Eclipse-Period Nov'05 - Jan'06

• During eclipse, the SeaWinds instrument undergoes a significant transient physical temperature cooling (from sunlight to night)

 Previous experience of SeaWinds on ADEOS-II demonstrated large Tb biases during dark side of the orbit

Typical QuikSCAT Ground Tracks 12 Hrs 12/21/05

Eclipse period 11/14/05 through 1/30/2006

A Time-Varying Radiometric Bias During the eclipse and post-eclipse period (12/19/05-12/23/05)

JPL Thermal Model Results: SeaWinds Antenna Physical Temperatures During Eclipse

Assumed Front-end Loss Physical Temp During Eclipse

Characterize the radiometric bias for QRad during eclipse periods

- Front-end loses (L1B) = L1+L2+L3 = -1.06 dB,
 - wave guide loss L3 = -0.24 dB
 - Microwave rotary joint loss (L2) = -0.18 dB.
 - Feed assembly loss (L1) = -0.64 dB
 - or a power ratio of 0.863
- The radiometric Tb bias introduced by this front-end loss during eclipse is:
 - (Δ Tb_bias) = (Δ Tphy) x (1- loss ratio)
 - (Δ Tb_bias) = 95 x (1- 0.863) =~13 Kelvin

QRad Tb Evaluation Over Land

QRad validation over land

- Differential energy calculation is more critical to radar echo cancellation over land
 - Provides a worst case scenario for evaluation of QRad transfer function
- Evaluate the effects of radar echo subtraction on QRad's $\rm T_{\rm b}$
 - Excess Noise (N_x) = $E_n \beta^* E_e$

Echo Energy

 Average echo energy is five times larger over land than over ocean

QRad Tb comparison with WindSat

- QRad's Tb's were compared to unadjusted Tb's from WindSat (@10.7GHz)
- Land surfaces are electromagnetically rough and emissivities are usually high (> 80%)
 - Change in Tb with incidence angle and frequency over 10 - 15 GHz range are usually small except for a small dc Tb offset
- Comparison was performed for five day average (Aug 1 through Aug 5)

Average Tb over land (H&V-pol) (Aug 1-5)

T_b Bias Over Land (Aug 1-5)

Δ Tb = QRad - WindSat = Tb bias (H & V-pol)

42

Comparison Observations

- Systematic differences over large regions of desert, vegetated land, and sea ice
 - $\Delta T_b \sim$ -10 K (colder) over rainforest
 - $\Delta T_b \sim +15$ K (warmer) Over deserts
- Tb differences are may be caused by
 - -Geophysical (dielectric) property differences
 - -Instrumental effects

Instrumental Effect

- Instrumental effect can be easily examined by cross-correlating the echo channel energy (sigma-0) and QRad Tb bias $\Delta T_{\rm b}$
 - Effect of residual echo channel energy after subtraction on the ΔT_b
 - Echo channel energy is directly proportional to radar cross section(Sigma-0)

Effects of radar echo subtraction (cont.)

• Tb transfer function was examined

$$Nx = E_n - \beta E_e = E_n - \beta P_r \tau - \beta k T_{sys} B$$
$$= E_n - \frac{\beta X \sigma \tau}{R^4} - \beta k T_{sys} B_e$$
$$- \text{ QRad Tb is proportional to the excess noise (Nx)}$$

- SeaWinds L2A data product was used to get 5 days averages of $\sigma^{\scriptscriptstyle 0}$

Surface Radar Cross Section (σ°) (Aug 1-5)

Sigma-0 is high over the tropical rainforest
Sigma-0 is low over deserts

Surface Radar Cross Section Analysis

- Images of sigma-0 and ΔT_b are anti-correlated
 - high sigma-0 correlated with low ΔT_b bias and vice versa
 - Cross-correlation analyses were performed
 - ΔT_{b} versus sigma-0 for land
 - Data were averaged using 0.01 sigma-0 bins to establish the mean trend for both polarizations

Comparison of delta Tb and sigma-0 Over Land (H-pol) (Aug 1-5)

48

Scatter diagram for delta Tb and sigma0 (V-pol) (Aug 1-5)

49

Tuning QRad Transfer Function Coefficient (B)

Tuning QRad Transfer Function

- QRad transfer function optimized to remove dependence of Tb on echo channel energy
- The optimum value for β makes the Tb bias over land independent of sigma-0
 - β parameter is the gain ratio = G_{noise}/G_{echo}

CFRSL MatLab Code Development

- JPL's QRad Tb algorithm processing code was not available to tune the QRad transfer function parameters (β)
- A MatLab version of QRad $\rm T_b$ algorithm was developed
 - Algorithm input: JPL L1A and L1B data files
 - Algorithm output: equivalent L2A T_b's

QRad T_b Differences over 25 km boxes: CFRSL - JPL

53

Tuning Beta

- Five days (~75 revs) L2A Tb's processed
- QRad transfer function was optimized by parametrically adjusting β value
 - Beta parameter varied from 2.900 to 2.920
 - Delta Tb = QRad_modeled WindSat
 - QRad_modeled is generated from L1A andL1B
- The optimum value was found to be 2.914 (instead of previously determined 2.917)

Beta Optimization Results

Summary and Conclusion

- The QRad microwave brightness temperature algorithm (JPL L2A product) has been validated
- Inter-satellite radiometric calibration with WindSat was performed
 - QRad Tb calibration over oceans during continuous sun-lighted orbits
 - Absolute measurement accuracy
 - ± 2 K Mean Tb biases relative to WindSat (standard)
 - The radiometric precision (NEDT)
 - 15 K (V-pol) & ~12 Kelvin (H-pol)
 - Evaluate calibration stability
 - Small seasonal changes in QRad Tb biases (< 2 4 K)
 - Major changes during eclipse periods

Summary and Conclusion

- Changes during eclipse periods (thermal transient case)
 - Biases are variable during eclipse orbits
 - Max QRad bias ~ 13 K (too low) coming-out of eclipse
 - Cause is error in assumed antenna front-end loss physical temperature
 - Bias transient starts at eclipse and ends ~ orbit/4 post-eclipse
- Ocean T_b near land was evaluated
 - Must use conservative mask of ~ 400 km from land
- T_b over land was evaluated
 - Discovered systematic T_b calibration biases
 - Biases correlated withland sigma-0
- QRad T_b algorithm future improvements
 - Beta parameter set to 2.914 for the next version of the QRad Tb algorithm

Conference Publications

- Rafik Hanna, Linwood Jones, "Evaluation of QuikSCAT Radiometer Ocean Brightness Temperatures" USNC/URSI National Radio Science Meeting, June 2009
- Linwood Jones, Rafik Hanna, "Validation of QuikSCAT Radiometer Brightness Temperatures "SeaWinds OVW Science Team Meeting, Sept. 2008
- Rafik Hanna, Linwood Jones, "Brightness Temperature Validation for SeaWinds Radiometer using Advanced Microwave Scanning Radiometer on ADEOS-II" IGARSS'07, July 2007
- Guillermo Gonzalez, Rafik Hanna, Liang Hong, and W. Linwood Jones, "HF Communications Analysis for Varying Solar and Seasonal Conditions" SoutheastCon '07, June 2007

Journal Publications

• **Rafik Hanna**, Linwood Jones," Evaluation of QuikSCAT Radiometer Ocean Brightness Temperatures", to be submitted to IEEE TGARS, Summer 2009

Backup Charts

QRad/WindSat Ocean Radiometric Calib:

- Sun-lighted Orbits
- Eclipse

Characterize the radiometric bias for QRad during sun-lighted orbits

- To investigate the cause for this systematic Tb difference between QRad and Windsat, the radiometric bias was examined separately for ascending (asc) and descending (dec) portions of the orbit.
- zonal averages were performed, using 5° latitude bins (to compensate for the reduced number of samples) to form a latitude series, which preserved the once per orbit pattern of radiometric biases.

Cause of radiometric bias: Examine QRad transfer function

- QRad's T_b were colder than the WindSat's T_b in the southern hemisphere by ~2K and warmer in the northern hemisphere by ~2-3 K for both H- and V-pol
- Ascending and descending portions track each other with latitude, and the difference is generally within ± 1 K.
- This is a very favorable result in that the biases are nearly identical with relative orbit time (latitude) and stable during the continuous sun-lighted orbits for both winter and summer
- This supports the notion that the bias is a common-mode effect within the QRad Tb algorithm and eliminates the possibility that the cause is related to ascending and descending effects, which are manifested in a local time of day phenomenon for the ocean Tb's.

Possible Causes for Systematic Tb Biases versus Lat

Hypothesis:

 The orbital variation in receiver (noise) temperature (Tr) could cause the observed Tb bias pattern

$$T_r = f(T_o)$$

Where

T_o is the receiver physical temp

QRad Radiometric Calibration During the Eclipse-Period

- During these periods, the SeaWinds instrument undergoes a significant physical temperature cooling transient (from sunlight to night)
- To assess the quality of the QRad during the eclipse period, zonal averages were performed over longitude using 5° latitude bins Latitude series were created, and monthly averages for month (January)

QRad Tb-Bias during the eclipse period (cont.)

H-Pol

QRad Tb bias (during eclipse period) for January 2006

TRMM Microwave Imager Tb Bias

 Similar Tb orbital bias pattern was observed during the TMI inter-satellite radiometric calibration as reported by Gopolan et al. TMI Bias- Oct 23, 2005 [β = -38.56⁰]

Antenna Pattern Sidelobe Spillover Effects on Ocean Tb

Antenna Pattern Effects on Ocean Brightness Temperatures

- Because SeaWinds is a radar, its antenna pattern was designed to provide spatial resolution and not the high beam efficiency usual for radiometer antennas
 - significant "Tb contamination" for pixels near land
- QRad radiometric biases (Qrad Windsat at 13.4GHz) in 0.25° pixels for a ten-day period in (August 2005) along the west coast of North America

Antenna Pattern Effects on Ocean Brightness Temperature (cont.)

Noise Equivalent Differential Temperature (NEDT)

Noise Equivalent Differential Temperature (NEDT)

 The noise equivalent differential temperature (NEDT) is a measure of the sensitivity of the measured Tb to changes in the scene brightness, NEDT was estimated by:

$$NEDT = T_{SYS} \left(\sqrt{\frac{1}{B\tau n}} + \left(\frac{\Delta G}{G}\right)^2 \right) \qquad G = \frac{En _ cal}{K\tau B_n T_{cal}}$$
$$\frac{\Delta G}{G} = \frac{std(G)}{} - mean(T_{cal}) * \left(\sqrt{\frac{1}{B_n} * \tau * n}\right)^2 = 0.021$$

NEDT for V-pol = 15.09 Kelvin NEDT for H-pol = 14.08 Kelvin

Gain Variation in one orbit

Mean= ~2.2*10²² & STD= 4.86*10²⁰

QRad STD for August STD_V=15.59 & STD_H=12.52

Standard Deviation Stability

Month	V-pol	H-pol
January	15.99	12.72
August	15.59	12.52
November	16.15	12.98

QRad Tb Evaluation over Land

QRad Tb over Land: Effects of radar echo subtraction

- Before subtraction, the echo channel gain must first be normalized to the noise channel gain, then the signal power may be exactly cancelled in the noise channel by subtraction
- If the gain normalization factor (β) is in error
 - there will be a residual signal left (too much or too little)
 - Further, this residual will be proportional to the signal power
- Over ocean, the radar echo channel energy is small compared to the system noise power
 - Tb bias is also small.
- Over land, the radar echo energy is much larger and the residual signal after subtraction is likewise larger than the ocean case; so the Tb bias will depend upon the beta and the radar echo energy

Tb Comparison over Land

