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ABSTRACT 
 

The Ku band microwave remote sensor, SeaWinds, was developed at the National 

Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Two 

identical SeaWinds instruments were launched into space. The first was flown onboard 

NASA QuikSCAT satellite which has been orbiting the Earth since June 1999, and the 

second instrument flew onboard the Japanese Advanced Earth Observing Satellite II 

(ADEOS-II) from December 2002 till October 2003 when an irrecoverable solar panel 

failure caused a premature end to the ADEOS-II satellite mission. SeaWinds operates at a 

frequency of 13.4 GHz, and was originally designed to measure the speed and direction 

of the ocean surface wind vector by relating the normalized radar backscatter 

measurements to the near surface wind vector through a geophysical model function 

(GMF). In addition to the backscatter measurement capability, SeaWinds simultaneously 

measures the polarized radiometric emission from the surface and atmosphere, utilizing a 

ground signal processing algorithm known as the QuikSCAT / SeaWinds Radiometer 

(QRad / SRad). This dissertation presents the development and validation of a 

mathematical inversion algorithm that combines the simultaneous active radar 

backscatter and the passive microwave brightness temperatures observed by the 

SeaWinds sensor to retrieve the oceanic rainfall. The retrieval algorithm is statistically 

based, and has been developed using collocated measurements from SeaWinds, the 

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rain rates, and 

Numerical Weather Prediction (NWP) wind fields from the National Centers for 

Environmental Prediction (NCEP). The oceanic rain is retrieved on a spacecraft wind 
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vector cell (WVC) measurement grid that has a spatial resolution of 25 km. To evaluate 

the accuracy of the retrievals, examples of the passive-only, as well as the combined 

active / passive rain estimates from SeaWinds are presented, and comparisons are made 

with the standard TRMM rain data products. Results demonstrate that SeaWinds rain 

measurements are in good agreement with the independent microwave rain observations 

obtained from TMI. Further, by applying a threshold on the retrieved rain rates, 

SeaWinds rain estimates can be utilized as a rain flag. In order to evaluate the 

performance of the SeaWinds flag, comparisons are made with the Impact based 

Multidimensional Histogram (IMUDH) rain flag developed by JPL. Results emphasize 

the powerful rain detection capabilities of the SeaWinds retrieval algorithm. Due to its 

broad swath coverage, SeaWinds affords additional independent sampling of the oceanic 

rainfall, which may contribute to the future NASA's Precipitation Measurement Mission 

(PMM) objectives of improving the global sampling of oceanic rain within 3 hour 

windows. Also, since SeaWinds is the only sensor onboard QuikSCAT, the SeaWinds 

rain estimates can be used to improve the flagging of rain-contaminated oceanic wind 

vector retrievals. The passive-only rainfall retrieval algorithm (QRad / SRad) has been 

implemented by JPL as part of the level 2B (L2B) science data product, and can be 

obtained from the Physical Oceanography Distributed Data Archive (PO.DAAC).
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CHAPTER ONE: INTRODUCTION 
 

 

Rainfall is an essential source of fresh water that sustains all forms of life. It plays 

a significant role in the Earth’s hydrological circulation, where vast quantities of water 

cycle through the Earth's atmosphere, oceans, and land over both short and long time 

scales. Rainfall keeps the Earth in balance by redistributing water from the oceans and 

warm tropical areas to the rest of the planet. The condensation of water vapor into rain in 

the Earth’s atmosphere releases heat. This heat is the drive of the Earth’s wind systems 

which move clouds, power tropical storms and violent hurricanes.  

During recent years, significant progress has been witnessed in weather 

forecasting, climate monitoring and extreme event prediction using sophisticated 

numerical models. These models are fed among other inputs, with rainfall data. Accuracy 

of these weather prediction models depends on availability of frequent, uniformly 

sampled rainfall measurements with global coverage. Therefore, an accurate knowledge 

of the intensity, distribution and variability of rainfall on a global basis is of paramount 

importance to help scientists and researchers better understand the water and energy 

cycles, and accurately predict weather and climate patterns.  

Over the land, rain measurements are generally available using networks of rain 

gauges and ground based meteorological radars. On the other hand, rain estimation over 

the open oceans suffers from a scarcity of in-situ measurements, which is mainly 

attributed to the rough marine environment and high cost associated with the deployment 

of in situ observation systems. Since oceans cover about 70% of the Earth surface, 
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contain nearly 97% of the Earth free water, and because the vast majority of global 

rainfall and evaporation occurs over the oceans, solving the problem of observational 

shortage in measuring the rainfall over oceans has received significant attention. Over the 

past three decades, space-borne remote sensing techniques utilizing specialized sensors, 

operating at microwave frequencies, and flying onboard artificial satellites in low Earth 

orbits (LEO) have proven to be efficient in providing unparalleled wide coverage and 

frequent measurements of oceanic rainfall.  

In addition to providing useful rainfall information, satellite microwave sensors 

have been applied and successfully utilized in monitoring various atmospheric and 

oceanic environmental parameters. For example, space-borne scatterometers have been 

used in vegetation and soil moisture mapping, discrimination of ice types, and measuring 

the global ocean wind speed and direction [1-3]. Further, space-borne multi-frequency 

microwave radiometer imagers flying on low earth satellites, such as the Special Sensor 

Microwave/Imagers (SSM/I) series operated on the Defense Meteorological Satellite 

Program (DMSP), and the Tropical Rainfall Measuring Mission (TRMM) Microwave 

Imager (TMI) have provided reliable passive microwave data for retrieving various 

atmospheric and oceanic environmental parameters such as integrated atmospheric water 

vapor and cloud liquid water, ocean surface wind speed, and sea ice concentration and 

type [3-5]. 

One of the most recent microwave sensors developed by NASA is the SeaWinds 

instrument. SeaWinds is a conical scanning sensor, which operates at a Ku-band 

frequency of 13.4 GHz. The instrument utilizes a mechanically spun parabolic antenna 

with a dual polarized pencil beam design to collect measurements over a continuous 
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swath that covers about 90% of the Earth’s surface on a daily basis. A typical global 

coverage of the instrument during a 24 hour period is presented in Figure 1 below. The 

SeaWinds instrument was launched onboard two satellite missions: the first was onboard 

NASA’s QuikSCAT satellite which has been in orbit since June 1999. A second identical 

instrument flew onboard Japan’s Advanced Earth Observing Satellite II (ADEOS II) 

between December 2002 and October 2003, when a malfunction of power generating 

solar panels caused a premature termination of the ADEOS II satellite mission.  

. 

 

Figure 1: Typical daily coverage of the SeaWinds instrument. Black indicates uncovered 
oceanic areas.  



 4

The primary mission objective of the SeaWinds instrument was to measure the 

speed and direction of the global ocean wind vector, by measuring the wind dependant 

normalized radar cross section (σ0) of the ocean’s surface. To obtain the σ0 

measurements, SeaWinds transmits microwave pulses of known power and duration to 

the surface, and measures the portion of power backscattered toward the antenna through 

a narrow band 250 KHz echo channel. Because the power measurement is corrupted with 

noise, SeaWinds utilizes an additional noise channel with a 1 MHz bandwidth to make a 

separate measurement of the noise-only power, which is subtracted from the signal + 

noise measured by the echo channel. This provides the measurement of the backscattered 

power, from which σ0 measurements can be estimated using the radar equation [2].     

In addition to measuring the active normalized radar backscatter, the SeaWinds 

instrument has the simultaneous capability to measure the linearly polarized passive 

radiometric emission from the Earth’s surface and intervening atmosphere. This 

capability, known as the QuikSCAT Radiometer (QRad) is made possible by calibrating 

SeaWinds noise channel to provide measurements of polarized brightness temperatures at 

13.4 GHz. The QRad radiometric transfer function was not originally envisioned, rather it 

was implemented post launch through ground signal processing [6].  

Validation studies demonstrate that the SeaWinds instrument is capable of 

providing highly accurate estimates of the global oceanic wind vector under most rain 

free weather conditions [7]. However, the presence of rain can alter the wind induced 

backscatter signature and even corrupt the wind estimation process. While rain can only 

affect up to ~10% of the SeaWinds measurements on an average basis, the spatial and 

temporal distribution of rain is not random. The degradation of the retrieved wind vector 
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accuracy obtained from SeaWinds is manifested as a positive wind speed bias, and an 

erroneous wind direction solution which is usually pointing perpendicular to the 

spacecraft nadir track. Thus, in order to maintain the high quality of the wind 

measurements retrieved from the SeaWinds instrument, it is of primary importance to 

detect the presence of rain and identify the contaminated wind vector measurements. 

 In this dissertation, we utilize the SeaWinds simultaneous passive radiometric 

brightness temperatures, and active radar backscatter measurement capabilities to develop 

a mathematical inversion algorithm that detects the presence of rain, and further provides 

quantitative estimates of the global oceanic rainfall. The algorithm is based upon a 

correlation between the passive / active measurements from SeaWinds and the rain rates 

derived from TRMM TMI radiometer. Using a statistical inversion technique, oceanic 

rain rates are retrieved from SeaWinds data on a spacecraft wind vector cell (WVC) 

measurement grid of 25 km resolution. To evaluate the performance of the SeaWinds 

retrieval algorithm, comparisons are made with standard rain products from independent 

rain measuring instruments. Results demonstrate that SeaWinds rain estimates correlate 

well with those independent rain measurements. Besides providing a powerful rain flag 

that identifies the rain contaminated wind vector measurements, SeaWinds rain estimates 

have the additional scientific utility of improving the temporal and spatial coverage of the 

sparsely sampled oceanic rainfall. 

This dissertation is organized into eight chapters. Following this introduction, 

chapter two summarizes the basic principles of microwave scatterometry and radiometry. 

The chapter also includes a brief history of various satellite scatterometer and radiometer 

missions. Further, a detailed discussion of the SeaWinds instrument is given. Chapter 
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three presents a brief literature review of the techniques used to retrieve oceanic rainfall 

from space-borne active and passive observations. Theoretical background, of the 

interaction between rain and electromagnetic radiation, is also presented. Chapters four –

seven are the core of this dissertation. In chapter four, a detailed discussion of the 

development of the passive-only QuikSCAT Radiometer (QRad) rain algorithm is 

presented. The QRad algorithm utilizes the passive radiometric measurements from 

SeaWinds to detect and estimate oceanic rainfall. Validation of QRad rain retrievals are 

presented in chapter five. Chapter six discusses the development of a simple empirical 

model that characterizes the average effect of rain on the SeaWinds backscatter 

measurements. In chapter seven, a combined passive / active rain retrieval algorithm is 

developed to refine the oceanic rain estimation from SeaWinds sensor. The dissertation 

concludes with a brief summary and conclusions in chapter eight.    
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CHAPTER TWO: REVIEW OF MICROWAVE SCATTEROMETRY 
AND RADIOMETRY 

 

 

Introduction 

 

For more than three decades, space-borne microwave sensors have proven to be 

indispensable tools in providing useful information on various environmental parameters 

related to the Earth’s surface and atmosphere [2, 3, 5]. These space-borne sensors can 

provide more frequent mapping and uniform sampling than what is available from the 

conventional in situ observations. Further, operation at microwave frequencies enables 

measurements to be acquired under almost all weather, day / night conditions. 

According to their mode of operation, microwave sensors can be divided into two 

major categories. The first is the group of sensors capable of providing their own source 

of illumination, known as active sensors. They consist of a transmitter and a receiver. 

This group of sensors includes radars, scatterometers, and altimeters. The second group 

of microwave sensors is the passive sensors, also known as microwave radiometers. They 

consist of highly sensitive receivers that measure the electromagnetic radiation 

originating from the scene observed by the sensor antenna. Data from both active and 

passive sensors has been effectively used in a variety of Earth science studies, including 

mapping the rainfall over the ocean. 

The SeaWinds microwave sensor considered in this dissertation has the unique 

capability to operate simultaneously as a scatterometer and a radiometer at a Ku-band 



 8

frequency of 13.4 GHz. In order to understand the underlying principles of operation of 

the SeaWinds instrument, this chapter presents a brief background on the fundamental 

concepts of microwave radiometry and scatterometry. A brief historical overview of 

previous and current satellite radiometer and scatterometer missions is given. In the last 

section, a detailed discussion of the SeaWinds instrument, including its measurement 

geometry and radiometric transfer function is provided. 

 

 

Fundamental Concepts of Microwave Scatterometry  

 

When an electromagnetic (EM) wave strikes the boundary surface separating two 

semi-infinite media, part of the incident energy is scattered, and the rest propagates 

through the second medium. Depending on the dielectric homogeneity of the second 

medium, two scattering mechanisms can take place [2]:  

If the second medium is homogeneous, the scattering process is limited to the 

boundary surface, resulting in surface scattering phenomena. The surface scattering is 

dependant upon the roughness of the surface, a relative property determined by the 

wavelength of the incident EM wave. According to the degree of roughness, three surface 

scattering patterns can be observed, as illustrated in Figure 2. For a smooth surface, 

reflection at the surface is mainly a specular reflection, described by Fresnel laws. For a 

medium rough surface, the scattering consists of two components, a coherent component 

in the specular direction, and a non coherent (diffuse) component which radiates power in 
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all directions. As the roughness of the surface increase, the coherent component becomes 

negligible, while the diffuse scattering component becomes more dominant, as the case of 

a very rough (Lambertian) surface. 

On the other hand, if the second medium is dielectrically inhomogeneous, or 

composed of a mixture of materials with different dielectric properties, the scattering 

process takes place within the volume of the second medium, which is referred to as 

volume scattering. The mechanism of volume scattering redistributes the transmitted 

wave energy into other directions and results in a loss, compared to the energy of the 

original transmitted wave. 

 

 

Figure 2: Examples of surface scattering patterns. 
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In the microwave region, ocean has a large dielectric constant and is treated as a 

homogeneous medium primarily capable of surface scattering. Radar backscattering from 

the ocean for angles of incidence beyond 20º is mainly governed by Bragg scattering. 

This scattering mechanism, usually described by the term Bragg resonance, appears to 

arise mainly from resonant interaction of incident EM radiation with periodic capillary 

and short gravity waves of the ocean surface. This phenomenon is illustrated in Figure 3, 

which shows a periodic component of the ocean surface wave, having a spatial 

wavelength of L. Also shown on the figure a plan EM wave of wavelength λ, which is 

incident upon the ocean surface at an angle of θ. At resonance, the displacement ∆R is 

equal to λ/2, and the phase components of the scattered EM field from successive wave 

crests will be multiples of 2π, and hence, will add constructively. 

 

 

Figure 3: Illustration of in-phase addition of Bragg scattering when ∆R = nλ/2 
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The Bragg resonance condition can be mathematically described by [2]: 

 

…,3,2,1,2
==∆=∆ nnRRk π

λ
π                                   (2.1) 

 

where k is the EM wave number, equal to 2π/λ. In terms of incidence angle and radar 

wavelength, the condition for Bragg resonance can be re-written as: 

 

…,3,2,1,sin2
== nnL θ

λ
                                         (2.2) 

 

The power received from the resonant components is proportional to the square of their 

number. As the illuminated area increases, the number of resonant scatterers increases, 

and as a result, more resonant power is received. In the case of space-borne radars, with 

large footprints, the Bragg resonance effect is very powerful that it can dominate the 

return signal. 

Radars are active remote sensors used to detect the presence, tack the position, or 

image an observed target. Because they are capable of providing their source of 

illumination, radars can usually operate under all weather and light independent 

conditions. Radars can transmit continuous waves or pulses of microwave energy, which 

upon interaction with the target, will be partially absorbed and partially scattered in all 

directions. The power back scattered toward the radar is collected by the antenna, and can 

be related to the transmitted power through the radar equation [8]:  
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where Pt is the transmitted power in Watts, which is directionally modulated by the 

transmitting antenna gain Gt. R is the slant range distance to the target, measured in 

meters. λ is the wavelength of the transmitted radar signal in meters. Pr is received power 

in Watts, backscattered from the target, and captured by the receiving antenna with gain 

Gr. For a mono static radar (transmitter and receiver are on the same platform), the gains 

of the transmitting and receiving antennas are equal. L represents the system and 

propagation losses encountered during the round trip of the radar signal. The 

proportionality constant, σ, is the radar cross section measured in squared meters (m2).  

Equation 2.3 is the fundamental radar equation for point targets, whose 

dimensions are negligible compared to the radar antenna field of view (FOV). In remote 

sensing applications, targets of interest are usually extended area targets, such as the 

Earth’s ocean or land surfaces. In such applications, the radar return consists of coherent 

contributions from a large number of point scatterers within the radar’s antenna FOV, and 

as a result, σ is no longer considered a constant. An extended (distributed) target is 

divided into smaller sub-targets, each of area ∆Ai that contains enough number of point 

scatterers. The normalized radar cross section, σ0, is a dimensionless quantity (m2/ m2), 

defined as the average value of the differential σi normalized to its area:  

 

i

i
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σ
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Using this definition of σ0, equation (2.3) can be expanded to calculate the radar return 

from a distributed target by integrating the contributions from the differential elements 

over the area illuminated by the radar antenna: 
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The normalized radar cross section, σ0, is affected by instrument related factors, such as, 

wavelength, polarization, incidence and azimuth angles. Also, σ0 is a function of the 

geometric and dielectric properties of the target, such as, roughness, size, slope, 

homogeneity, complex permittivity and permeability of the target’s material, and it is 

considered as a unique and accurate signature of the target under observation. The 

sensitivity of σ0 measurements to target parameters enables the remote sensing of various 

geophysical variables over land or ocean surfaces.  

A scatterometer is a microwave radar calibrated to make accurate measurements 

of σ0. The direct measurement is the received power from the area lit by the antenna. 

From the power measurement, σ0 can be estimated by inverting Equation 2.5 [2]: 
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The primary application of the scatterometer σ0 measurements is the retrieval of the near 

surface ocean wind vector (speed and direction), which is made possible due to the 

existence of a relationship between the σ0 measurements and the wind roughened ocean 

surface. Scattering from the surface of the ocean is driven by several factors, among 

which is the roughness of the ocean surface that is determined by the wind induced 

waves. As the wind blows over the ocean surface, energy is transferred to the surface, and 

waves are generated and amplified. The first waves generated are known as the capillary 

(surface tension) waves. These waves travel in the direction of the wind, usually riding on 

larger ocean waves. According to Bragg scattering phenomenon, the tiny capillary waves 

resonate with the radar signal, and scattering from the ocean surface becomes highly 

dependent on the amplitude of these waves. As the wind speed increases, more energy is 

transferred to the waves, leading to an increase in their amplitudes, and eventually to 

more backscattered energy. Also, σ0 measurements over the ocean surface exhibit an 

azimuthal modulation with respect to the relative wind direction blowing over the 

surface. In addition to the wind vector (speed and direction) dependence, σ0 varies as a 

function of incidence angle, and the polarization of the incident EM wave, and can be 

affected by several geophysical parameters such as the sea surface temperature (SST), 

and foam coverage [2, 3].  

Therefore, developing an analytical model to describe the ocean σ0 is a 

complicated task due to the large number of factors and geophysical variables involved in 

the process. This led researchers to embark on empirical relations, known as geophysical 

model functions (GMFs), to define the dependence of ocean σ0 measurements on certain 

parameters of interest. For example, since 1960s considerable amount of research has 
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been conducted to define accurate GMF relationships correlating the scatterometer σ0 

measurements to the near surface wind vector (speed and direction) over the ocean. These 

empirical GMFs utilized a large data set of near simultaneous airborne and spaceborne 

scatterometer σ0 observations, co-registered with surface truth winds. The σ0 

measurements are binned according to the wind speed, relative wind direction, incidence 

and azimuth angles to empirically derive GMF relations, which are stored in 

multidimensional look-up tables. Some research has been conducted to employ neural 

networks to derive the GMF [9]. The dependence of σ0 measurements on the wind vector 

through the GMF is denoted by: 

 

( )0 , , , ,pσ υ χ θ= …M                                                                  (2.7) 

 

Here, M  represents the GMF, υ is the wind speed, θ is the incidence angle, p is the 

polarization of the EM wave, χ is the relative direction defined as: 

 

ϕαχ −=                                                                                       (2.8) 

 

where α is the azimuth angle, and φ is wind direction. The dots (…) in Equation 2.7 

denote the dependence of the GMF on other geophysical variables (sea surface 

temperature, foam coverage, etc.) whose contribution is considered negligible. An 

example of a GMF is depicted in Figure 4, which shows the loci of the ocean σ0 plotted 

against the relative wind direction for three different wind speeds (3, 7 and 20 m/s). The 
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measurements are for a horizontally polarized beam, having an incidence angle of θ = 

46º. The dependence of σ0 on the wind speed is evident, moreover, an angular modulation 

of σ0 as a function of the relative wind direction is clearly shown, where the upwind 

signal is stronger than the downwind, and both are much stronger than crosswind. This 

dependence of σ0 on the speed and direction makes the retrieval of the ocean wind vector 

possible. The harmonic nature of the GMF can result in multiple pairs of speed and 

direction that corresponds to the same σ0 value, therefore, multiple σ0 measurements from 

different azimuth look angles are required to eliminate the ambiguity and find a unique 

wind vector solution [10]. 

 

 

Figure 4: QuikSCAT Geophysical Model Function (GMF). 
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Satellite Scatterometer Missions  

 

Historically, first measurements of ocean backscatter date to World War II, where 

it was observed that the presence of winds and waves increased the clutter intensity over 

the ocean surface [11]. The idea of using space-borne radars to study oceans first 

appeared in mid-1960s, and is attributed to Moore and Pierson. In early 1970s the 

concept that the measured backscatter was proportional to wind speed was widely 

accepted after extensive field experiments and theoretical developments, and as a result 

space-borne scatterometers were born. 

The first space-borne scatterometer SL-193 flew as part of the Skylab mission 

during 1973 and 1974. The instrument operated at a frequency of 13.9 GHz, and utilized 

a dual linearly polarized parabolic antenna. The beam was scanned in fixed angles from 

vertical in the along track and cross track directions, producing single azimuth look 

measurements of the radar cross section. Although the single look measurement was 

insufficient to resolve the wind direction ambiguity, the Skylab mission demonstrated the 

feasibility to measure the ocean surface winds from space. During the early 1970s period, 

several airborne experiments took place. The most notable was NASA Advanced 

Applications Flight Experiment (AAFE) which was used in part to validate the 

performance of the Skylab instrument by under flights in the Gulf of Mexico. In addition 

to providing high quality ocean backscatter measurements, which formed the basis for the 

geophysical model function used with future scatterometer missions, the AAFE 
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measurements significantly contributed in determining the azimuth variations of σ0 by 

using the innovative idea of circle flights [11]. 

The following space mission was the Seasat-A Satellite Scatterometer (SASS) 

operated for 99 days from June to October 1978 [1]. SASS was the first scatterometer 

designed specifically to measure the wind vectors on the ocean surface. Because each 

surface area was only viewed from two directions, it was insufficient to unambiguously 

retrieve the wind direction. However, the SASS cross section measurements have been 

used to significantly refine the empirical model relating backscatter to wind velocity, and 

this mission did prove that accurate wind velocity measurements could be made from 

space. 

The next scatterometer in space was part of the Active Microwave Instrument 

(AMI) on the European Space Agency’s first European Remote Sensing Satellite ERS-1 

in 1991. This C-band 5.3 GHz system could measure each ocean location from three 

directions, thereby improving the ambiguity removal process. It was followed in 1995 by 

ERS-2 with an identical instrument [12, 13]. 

In 1996, the NASA scatterometer (NSCAT) instrument was launched as an 

experiment on Japan’s Advanced Earth-Observation Satellite (ADEOS). NSCAT 

provided Ku-band backscatter and wind data for about 10 months till the demise of the 

host spacecraft in June 1997. In order to fill the gap created by the unexpected early loss 

of NSCAT scatterometer, NASA developed a quick recovery mission known as 

QuikSCAT satellite which has been in operation since June 1999 and houses the 

SeaWinds scatterometer. After about seven years in orbit, SeaWinds onboard QuikSCAT 

continues to provide high quality backscatter data that is being used in many scientific 
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applications. A second identical SeaWinds instrument flew onboard the Japanese 

Advanced Earth-Observation Satellite II (ADEOS-II) satellite which was launched in 

December 2002, but unfortunately the instrument was lost after ten months due to an 

irrecoverable failure in the spacecraft solar panel. 

Unlike SASS and NSCAT scatterometers which both utilized the fan beam 

design, that uses multiple fixed position, sticklike antennas with broad beams to form the 

measurement swath,   the SeaWinds instrument employs a pencil beam design which has 

several inherent advantages over the fan beam approach including higher signal-to-noise 

ratio, smaller size, simplicity, greater accuracy, extensive coverage, and easier 

accommodation on spacecraft. In addition to providing backscatter measurements, 

SeaWinds has the simultaneous capability of measuring the passive emission from the 

scene under observation. A detailed discussion of SeaWinds instrument is provided in the 

last section of this chapter.    

 

 

Fundamental Concepts of Microwave Radiometry  

 

Radiometry is field of science related to the measurement of incoherent 

electromagnetic radiation. A microwave radiometer is a passive, receive only sensor that 

is capable of measuring low levels of radiation in the microwave region of the 

electromagnetic spectrum. The received radiation is partly due to self emission by the 

scene, and partly due to reflection of radiation from the surroundings which is collected 
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by the antenna. Microwave radiometers have been extensively used in astronomical 

studies, as well as various studies related to the Earth’s land, ocean and atmosphere [3, 

5]. Data collected by microwave radiometers is being operationally used in weather 

forecasting and environmental monitoring [14].  

Based upon thermodynamic principles, all material media (gases, liquids, solids 

and plasma) at a finite absolute temperature both emit and absorb incoherent 

electromagnetic energy. When in thermodynamic equilibrium with its environment, a 

material absorbs and radiates energy at the same rate. A blackbody is a fundamental 

concept in thermal emission, which is defined as a perfect absorber and a perfect emitter. 

According to Planck’s radiation law, a blackbody radiates uniformly in all directions with 

a spectral brightness, Bf, defined by the following equation [5]: 
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where: h is Plank’s constant (6.63 x 10-34 joules), k is Boltzmann’s constant (1.38 x 10-23 

joules K-1), c is the velocity of light (3 x 108 m s-1), T is the absolute temperature in 

Kelvin, f is the frequency of radiation. In the microwave region, Plank’s law can be 

approximated by the Rayleigh-Jeans law given by: 
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Using the above approximation, the blackbody power detected by a microwave 

radiometer receiver having a bandwidth ∆f is given by: 

 

fkTPbb ∆=                                                                                 (2.11) 

 

However, nothing in nature behaves like an ideal blackbody. Real materials, 

usually referred to as grey bodies, emit less than a blackbody does and do not absorb all 

the energy incident upon them. In this case, the blackbody equivalent radiometric 

temperature is called the brightness temperature, TB, which is related to the physical 

temperature through emissivity, ε, as: 

 

TTB ε=                                                                                    (2.12) 

 

The emissivity is a function of frequency, polarization and incidence angle, and varies 

between zero for a perfectly non-emitting material and unity for a perfect emitter 

(blackbody). Thus, the brightness temperature of the material is always smaller than or 

equal to its physical temperature. 

The Earth’s atmosphere and ocean surface are examples of grey bodies that 

partially absorb and emit electromagnetic radiation. The emissivity of the ocean depends 

upon several geophysical variables,   such as the ocean roughness, salinity, and the ocean 

surface temperature. Also, ocean emissivity varies with water complex dielectric 

constant, the presence of foam over the ocean surface, and it is strongly dependent on 

electromagnetic polarization. On the other hand, the emission from the atmosphere is 
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dependent upon absorption by oxygen, water vapor and liquid water particles. The 

atmospheric emission is independent of polarization. In the presence of rain, scattering 

effects may not be negligible depending on the density and drop size distribution of the 

water droplets relative to the electromagnetic wave. 

Space-borne microwave radiometers are used to collect the brightness 

temperatures originating from the atmosphere and the ocean surface.  A typical scenario 

is depicted in Figure 5. The total brightness incident upon the radiometer antenna is 

composed of the following three components: self-emission from the atmosphere which 

has propagated directly upward, Tup. The second component is the emission from the 

ocean surface that propagated upward through a partially absorptive atmosphere, TBS. 

The third component is the downward self-emitted radiation from the atmosphere that is 

reflected by the ocean surface and propagated in the direction of the antenna through a 

partially absorptive atmosphere, TSC. The following equations summarize the relationship 

among the aforementioned components: 
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where TSC  is defined as: 
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Figure 5: Space-borne radiomter observing the ocean at nadir angle θ 
 

In the above formulation, TAP represents the total radiation incident upon the 

antenna, which is a function of incidence angle θ, electromagnetic wavelength λ, and the 

EM polarization, p. La represents the atmospheric losses, ε is the ocean emissivity, and 

TEX is the extraterrestrial radiation (~ about 3 K) incident upon the ocean surface.  

By appropriate selection of operating frequencies and taking independent 

measurements (different frequencies and polarizations), space-borne microwave 

radiometers are capable of retrieving multiple unknown geophysical parameters, and 
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predicting the profile of a particular variable of interest.  The number of required 

brightness temperature observations should at least equal or larger than the number of 

geophysical parameters. 

There are three major types of radiometers: the total power radiometer, Dicke 

Radiometer and noise-injection radiometer. Among them, total power radiometer has the 

simplest design, which is comprised of an antenna, a microwave receiver with a power 

detector. An important parameter used to characterize the performance of the radiometer, 

and assess its measurement accuracy, is known as radiometer sensitivity or radiometric 

resolution, ∆T, which is defined as the smallest change in measured brightness 

temperature that can be detected at the radiometer input. The radiometric resolution for 

the total power radiometer is given by the following expression [5]:  
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Where: τ is the integration time, B is the bandwidth of the receiver, TSYS represents the 

system noise temperature (which is the sum of the antenna and receiver noise 

temperatures), ∆Gsys is the effective value (rms) of power gain variation, and Gsys is the 

average system power gain. In the ideal model, power gain variation is neglected. The 

sensitivity of the total power radiometer is half the sensitivity of the Dicke and noise 

injection radiometers. 

 



 25

Satellite Radiometer Missions 

 

Historically, space-borne passive microwave observations of planet Earth were 

initiated in 1960s by the launch of the Russian Cosmos-234 satellite, which carried four 

microwave radiometers [5]. Since then, passive microwave radiometry from space has 

established itself as an essential part in the field of remote sensing the Earth’s 

environment.  In early 1970s, several passive microwave radiometers have flown on a 

number of space-borne platforms.  

The Electronically Scanned Microwave Radiometer (ESMR) was launched 

aboard Nimbus 5 and Nimbus 6 satellites in 1972 and 1976 respectively. The ESMR was 

a single channel instrument operating at a frequency of 19.35 GHz, and scanning ±45º 

cross track of nadir, providing global images of microwave emission with a spatial 

resolution of the order of 25 ~ 50 km [3, 5].  

In 1978, the Scanning Multi-channel Microwave Radiometer (SMMR) was 

launched onboard Seasat and Nimbus-7 satellites. It measured the brightness temperature 

at five frequencies 6.6, 10.7, 18, 21.3 and 37 GHz for both vertical and horizontal 

polarizations. Measurements from the SMMR radiometers were used to infer a multiple 

number of surface and atmospheric parameters including wind speed, sea temperature, 

soil moisture, snow cover, water vapor, liquid water content and rain rate [3, 5].    

A major milestone in space-borne microwave radiometry was achieved after the 

launch of the Special Sensor Microwave Imager (SSM/I) onboard the Defense 

Meteorological Satellite Program (DMSP). The first SSM/I was launched in 1987, and 

since then several additional SSM/I instruments have been launched. The SSM/I is a 
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conical scanning radiometer that measures the radiation intensity using seven channels: 

19.35 H/V, 22.235 V, 37 H/V and 85.5 H/V GHz [15]. The SSM/I radiometers have 

proved themselves as stable and well calibrated instruments, and have been very useful in 

measuring several geophysical parameters including rainfall. 

In November 1997, the Tropical Rainfall Measuring Mission (TRMM) satellite 

was launched into space. As the name implies, the primary focus of the TRMM mission 

is to measure the rainfall over the tropics. One of the primary microwave sensors onboard 

TRMM is the TRMM Microwave Imager (TMI) [16, 17]. TMI is a conical scanning 

sensor that consists of nine total power radiometers to measure the emission from the 

Earth and atmosphere using four dual polarization frequencies (10.7, 19, 37, 85 GHz) and 

one single polarization (V-pol) channel at 21.3 GHz. TMI has a similar design to the 

SSM/I instrument, with some exceptions. TMI has two additional channels at 10.7 GHz. 

Also, the water vapor channel for TMI is moved to 21.3 GHz as compared to 22.235 for 

the SSM/I instrument 

In 2002, two microwave radiometers developed by Japan Aerospace Exploration 

Agency (JAXA) were launched into space: the first is the Advanced Microwave Scanning 

Radiometer (AMSR) which flew onboard the Japan’s Advanced Earth Observing 

Satellite-II (ADEOS-II). The second radiometer is AMSR-E launched onboard NASA's 

Aqua satellite [18]. AMSR is a total-power microwave radiometer, measuring emission at 

eight-frequencies, with dual polarization at 6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz, 

and two vertical channels at 50.3, and 52.8 GHz. AMSR employs a 2.0 meter diameter 

offset-parabolic antenna which is the largest space-borne microwave radiometer antenna 

of its kind. The AMSR-E radiometer is a modified version of AMSR to accommodate 
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Aqua platform. Major modifications include the exclusion of the 50 GHz channels and 

the use of a smaller (1.6 meter) deployable antenna. Measurements from both sensors 

have been utilized to retrieve several geophysical parameters including rainfall.  

The WindSat radiometer was launched in January 2003 onboard the Coriolis 

satellite. It is the world’s first polarmetric radiometer designed to measure the wind 

vector over the oceans. The WindSat radiometer employs a conical scanning six- foot 

spinning offset parabolic reflector to collect the polarized microwave emissions using a 

forward look swath (±60º azimuth), and a aft look (from 120º ~ 180º) in azimuth. The 

WindSat microwave radiometer consists of twenty-two channels, operating at five 

frequencies of 6.8, 10.7, 18.7, 23.8 and 37.0 GHz. While the 10.7, 18.7 and 37.0 GHz 

channels are fully polarimetric (H, V, ± 45° & LHCP/RHCP), the 6.8 and 23.8 GHz 

channels are only dual (H, V) polarized [19]. 

 

 

SeaWinds Sensor 

 

Instrument Description 

 

The SeaWinds sensor onboard QuikSCAT satellite (and by implication, SeaWinds 

on ADEOS-II satellite) is a conical scanning long-pulse radar system originally designed 

to measure the backscatter from the ocean surface to infer surface wind speed and 

direction [20]. SeaWinds has two receiver channels, which allow the received backscatter 
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signal (echo) and the black-body microwave emission (noise) from the ocean surface and 

interviewing atmosphere to be separated. Although, quantitative microwave brightness 

temperature measurements were not originally envisioned; never the less, the QuikSCAT 

radiometric function has been implemented post-launch through ground signal 

processing. This passive radiometric measuring capability is known as QuikSCAT 

Radiomter (QRad). 

SeaWinds measures the linearly polarized microwave active radar backscatter, σ0, 

and passive brightness temperature, Tb, at a Ku-band frequency of 13.4 GHz. To collect 

the measurements, SeaWinds utilizes a 1 meter diameter parabolic dish antenna, which is 

mechanically at 18 rpm counter clockwise as the spacecraft moves in orbit. The conical 

scan traces helical patterns on the surface and provides a continuous 1800 km swath, 

which can cover about 90% of the ocean surface in one day. The SeaWinds measurement 

geometry is depicted Figure 6 below. 

 

Figure 6 : SeaWinds measurement geometry. 
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Microwave backscatter and emission measurements are collected over the entire 

conical scan (forward and aft looking) with separate offset “pencil beams” at 46° 

incidence (horizontal polarization, H-pol) and 54.1° incidence (vertical polarization, V-

pol).  Individual σ0’s and Tb’s are averaged on a spacecraft measurement grid of wind 

vector cells at 25 km resolution that results in mean horizontal and vertical Tb’s 

collocated with the normalized backscatter measurements, σ0’s.  The pulse repetition 

frequency and antenna scan rate have been designed to provide approximately 50% 

overlap of the instantaneous field of view (IFOV) in both the along track and cross track 

directions.  Next, an overview of the QRad instrument and its radiometric calibration are 

provided [6, 21].  

 

  

Radiometric Calibration 

 

Designed as a radar, SeaWinds is not an optimum radiometer.  Brightness 

temperatures (Tb’s) are calculated for each received pulse with an equivalent integration 

time of 1.5 ms and a noise bandwidth of only 750 KHz. Because of the limited time-

bandwidth product, the radiometric precision is much lower than desired (∆T = 27 

Kelvin/pulse).  For QRad rain measurements, this can be partially ameliorated by using 

spatial and temporal averaging of individual pulses, where both forward-looking and aft-

looking azimuth directions are collocated onto a 25 km wind vector cell (WVC) 

measurement grid. Further, a 3x3 spatial averaging filter is applied on the WVCs to 
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reduce the unwanted random noise component of the measurement.  Each WVC 

polarized Tb observation is the average of about 54 pulses that results in a ∆T ~ 5 K.  

Unfortunately, for QRad there are no provisions for the usual two-point, hot and 

cold, absolute brightness temperature calibration.  However, the QRad radiometric gain 

calibration is accomplished once per antenna scan using an internal ambient temperature 

(warm) load in the receiver; and the Tb offset is established one time, in an on-orbit 

calibration in 2000, using external comparisons with a well-known natural black-body 

sources (the Amazon rain forest) and with selected rain-free ocean Tb measurement 

comparisons with TMI.  

For the ocean calibration, rain-free QRad polarized Tb’s are averaged for 3-days 

and are spatially collocated with TMI brightness measurements (over ± 40° latitude on a 

0.25° latitude x 0.25° longitude grid).  Because the polarized ocean Tb’s change with 

frequency and because TMI does not have a 13.4 GHz channel, a translation of TMI 

brightness temperatures must be performed before direct comparisons are possible with 

QRad. For TMI, the two lowest frequency channels (10.7 and 19.4 GHz) bracket the 

QRad frequency at 13.4 GHz; however, the incidence angles do not match.  The TMI 

incidence angle is 52.8° for all channels; whereas, for QRad, the inner (H-pol) beam is 

46° and the outer (V-pol) beam is 54.1°.  Thus, as described below, TMI Tb’s are 

interpolated over frequency and extrapolated over incidence angle to create QRad 

equivalent Tb’s, which are used to establish the QRad absolute radiometric offset.  

Over oceans, a microwave radiative transfer model developed by Wisler and 

Hollinger [22] is used to calculate the theoretical Tb’s for both QRad and TMI channels. 

At vertical polarization, QRad and TMI measurements are at similar incidence angles; 
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thus, TMI measurements are mostly frequency interpolated with a small incidence angle 

correction.  For horizontal, the 7° difference in incidence angle requires a significant 

incidence angle adjustment as well as frequency interpolation. Using the radiative 

transfer model, theoretical Tb values are used to determine a non-linear interpolation, thus 

producing the equivalent QRad Tb’s from TMI observations at 10.7 and 19 GHz.  

 

13.4 10.7 19.4 10.7( )Tb Tb sr Tb Tb= + −                                                 (2.16) 

 

where sr is a “spectral ratio,” defined as: 
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Analysis has shown that this spectral ratio yields equivalent QRad Tb’s accurate to 

within a few Kelvin [6, 21]. However, for the given frequencies, this spectral ratio 

exhibits a nearly exponential dependence on atmospheric columnar water vapor as shown 

in Figure 7.  To derive this spectral ratio, over 72,000 ocean Tb points were simulated at 

each 10.9, 13.4 and 19.4 GHz using atmospheric and oceanic environmental parameters 

from SSMI F-13 and NOAA NCEP numerical weather analysis.  The spectral ratio was 

then calculated at each Tb location and binned and averaged in 2 mm water vapor bins
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Figure 7: Brightness temperature spectral ratio as a function of columnar water vapor. Top 
panel is a plot of horizontal polarization, bottom panel is the vertical polarization.  Circles 
denote binned/averaged data and the error bars show ± one standard deviation.  The solid 
line shows the third order polynomial fit. 
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represented by circles.  The error bars denote ± one standard deviation.   The natural 

logarithm of the spectral ratio was then regressed against water vapor using a third order 

polynomial fit shown by the solid line.  Thus, an estimate of the columnar water vapor, 

derived from collocated TMI retrievals, is used to select the proper value for the spectral 

ratio. 

Further, because the orbital measurement swaths for QRad and TMI are not collocated 

simultaneously, transient rain events are present in both ocean data sets that can produce 

significant differences (10’s of Kelvin) at a given locations.  This error is effectively 

removed by editing the data using TMI (and QRad) rain flags.  If either instrument 

indicates rain, the location is deleted.  

For land, the emissivity is more complex, and the radiation transfer model was not 

used to produce equivalent QRad Tb’s. However, the Amazon rain forest was used 

because it is a large isotropic and nearly homogeneous target that is an approximate 

blackbody with a brightness of about 285 K over this range of frequencies.  Small diurnal 

effects of a few Kelvin have been observed in SSM/I measurements during ascending and 

descending pass times that are separated by approximately 12 hours, but during the 3-day 

average QRad Amazon comparisons, the TMI measured brightness temperatures at 10.7 

and 19.4 GHz were averaged and linearly interpolated to compare with QRad Tb’s. 

An example of the linear regression scatter diagrams for QRad and TMI 

equivalent Tb’s is given in Figure 8 for both H- and V-pols; and an expanded view of the 

difference between QRad and TMI measurements is shown in Figure 9. The symbols are 

binned average data on the TMI Tb; and the error bars denote ± one standard deviation.  
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Figure 8: Comparison of QRad and TMI ocean brightness temperatures for rain-free five 
day averages. Circles are binned / averaged data, and error bars represent ± one standard 
deviation. Dashed line is perfect agreement and solid line shows least squares regression 
 

 

Figure 9:  Five-day average oceanic brightness temperature differences (QRad – TMI) for 
rain-free ocean, April 2003. Circles are binned / averaged in 5 K bins by TMI, and error 
bars denote ± one standard deviation. 
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The stability of this external calibration procedure is good as observed from the resulting 

regression slope and offset for several different calibrations during 2000 that are provided 

in Table 1 below.  

 

Table 1: Linear fit of QRad to TMI ocean brightness temperatures.  Data is rain-free 
combined horizontal and vertical polarization three-day averaged ocean brightness 
temperatures.  TMI brightness temperatures are interpolated to QRad frequency and 
extrapolated to QRad incidence angle. 
 

Date Offset Slope 

Sept. '99 6.55 K 0.977 

June '00 6.32 K 0.955 

Jan. '01 9.07 K 0.958 

Apr. '03 4.67 K 0.978 

 

Another assessment of the calibration stability compares histograms of QRad and 

TMI equivalent ocean Tb’s taken seasonally. Here, three-day sets of average ocean 

brightness temperatures were produced with rain removed, and a typical set of histograms 

is shown in Figure 10.  For H-pol, the QRad median Tb is within a Kelvin of TMI; but for 

V-pol, the QRad results are low by a few Kelvin. Also QRad histograms are broader as 

the result of the increased QRad ∆T. The year 2000 calibration statistics are tabulated in 

Table 2; and when taken over the year, the median differences show a slight systematic 

variation, which may be related to the QuikSCAT seasonal thermal environment. Over a 

period of one year, the global mean of this variation is -0.29 K with a standard deviation 

of 0.85 for horizontal and correspondingly -2.76 K with a standard deviation of 0.75 for 
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Figure 10: Three-day average, rain-free, ocean brightness temperature probability density 
function, January 15 – 17, 2000. 
 

 

Table 2:  Median seasonal ocean brightness temperatures for year 2000.  Brightness 
temperatures are rain-free three-day average.  TMI brightness temperatures are 
interpolated to QRad frequency and extrapolated to QRad incidence angle. 
 

Date Qrad (H-pol) TMI (H-pol) Qrad (V-pol) TMI (V-pol) 

January 99.4 100.7 172.6 175.9 

March 101.1 101.5 173.1 176.4 

April 100.0 101.2 172.7 176.5 

July 101.2 101.1 173.7 175.7 

September 100.3 100.4 173.7 175.6 

October 100.3 100.4 173.7 175.6 
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vertical.  Again these results demonstrate that QRad and TMI derived equivalent Tb agree 

on average to within a few Kelvin. 

The final example of relative Tb stability is shown in the approximately two-year 

Tb time series given in Figure 11. The object of this comparison is to assess whether or 

not there are variable Tb biases caused by the seasonal solar heating of the satellite and 

instrument. This is important because the QRad transfer function uses the physical 

temperature of the front-end losses to calculate Tb.  For this evaluation, the polarized 

brightness temperatures are averaged over all pixels for a repeating (every 4-day) ground 

swath in the middle of the Pacific ocean between ± 45° latitude. During this evaluation, it 

was discovered that this orbit average Tb is very stable even when rain pixels are 

included. Because both earth hemispheres (± latitudes) are included, the seasonal rain 

effects appear to cancel and the mean Tb is very stable. In late 1999, a small step in Tb is 

visible, which corresponds to a change in the QRad range gate width (equivalent to 

integration time); but since then there have been no changes in the instrument transfer 

function.  In Figure 12, the QRad average polarized Tb deviation from its polarized time 

series mean is displayed for these repeating ground tracks, and over this two-year period, 

the rms difference about the mean is 1.4 K for both polarizations.  It is encouraging that 

both polarized brightness temperature deviations overlay and that they are consistent with 

the previous analysis presented above, which shows a small seasonal variation.  These 

results demonstrate the stability and effectiveness of this external calibration technique 

used for QRad; and in fact, this external TMI calibration has produced very consistent 

results over the entire five years that QRad has been in operation. 
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Figure 11: Pacific Ocean brightness temperature time series from QRad for repeating 
ground swath at approximately four-day sampling. 
 

 

Figure 12: Pacific Ocean brightness temperature deviation from the mean.  Measurements 
are for repeating ground swaths, approximately four days separation. 
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CHAPTER THREE:  REMOTE SENSING OF OCEANIC RAINFALL 
FROM SATELLITE-BORNE MICROWAVE OBSERVATIONS 

 

 

Introduction 

 

Rainfall over oceans and its associated latent heat release play an important role 

in the Earth’s hydrological cycle, atmospheric circulation, oceanic thermohaline 

circulation (circulation driven by salinity density differences), and the world’s food as 

well as fresh water supplies. Additionally, the availability of the oceanic rainfall data is of 

vital significance for scientists and researchers involved in modeling and predicting the 

Earth’s weather and climate systems. 

The harsh marine environment combined with the vast area of the ocean surfaces 

(~ 70% of the Earth surface), can make a direct in-situ measurement of rainfall over the 

ocean an extremely problematic process. On the other hand, remote sensing techniques 

utilizing satellite infrared and microwave observations provide near global mapping and 

more uniform sampling of the oceanic rainfall than is available from in situ 

measurements. 

Unlike the infrared measurements which are only indirectly related to rain, 

microwave remote sensing has more direct interaction with the rain volume, and as a 

result, has evolved as a primary source for estimating the rainfall over the oceans. The 

estimation of rain rate is made possible due to the absorption/emission and scattering 

signatures of atmospheric rain volume on microwave radiation.  
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This chapter presents an overview of the techniques and algorithms used for 

inferring oceanic rainfall from microwave radiometer and scatterometer observations. 

After a brief review of the theoretical basis of the interaction between rain volume and 

microwave radiation, an overview of several types of algorithms used for the retrieval of 

oceanic rainfall from passive microwave space-borne radiometers is presented. Next, 

research efforts conducted by science community to estimate rain over the oceans from 

space-borne scatterometer measurements, with a focus on the SeaWinds instrument will 

be highlighted. 

 

 

Interaction of Microwave Radiation with Rain 

 

The interaction between matter and electromagnetic radiation can be generally 

described by two processes: emission and extinction [2, 3, 5]. When the radiation 

traversing the medium is reduced in intensity, we have extinction. In contrast, if the 

medium under consideration adds energy of its own, we have emission. Usually, these 

two processes occur simultaneously.  

The energy lost by extinction maybe absorbed by the material, scattered, or both. 

The absorption loss, which is governed by the conductivity of the medium, occurs when 

energy is transformed into other forms, such as heat. On the other hand, scattering loss is 

caused by energy traveling in directions other than the direction of incident radiation and 

is governed by the degree of inhomogeneity of the dielectric properties of the medium. 
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 Absorption and scattering are linear processes, and they are characterized by the 

absorption coefficient (κa) and the scattering coefficient (κs) respectively. The extinction 

coefficient (κe) is defined as the linear sum:  

 

sae κκκ +=                                                                              (3.1) 

 

In a medium that absorbs and/or scatters radiation (e.g. the Earth’s atmosphere), 

the solution of the radiative transfer equation (RTE) in the microwave region of the 

electromagnetic spectrum is given by [3, 5]: 
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The above equation states that the apparent temperature at any observation point 

r, in a certain direction is defined as the sum of two terms. The first term is the apparent 

temperature at the boundary TAP(0), which is reduced in magnitude by an exponential 

factor due to the extinction by the medium between 0 and r. The second term represents 

the emission and scattering along the propagation direction within the medium. The 

single scattering albedo, a, is defined as the ratio: 
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T(r) is the physical temperature of the medium at point r. The optical thickness along a 

range from r1 to r2 is given by: 
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),( 21 κτ                                                                         (3.4) 

 

The scattered temperature TSC(r) accounts for apparent temperature scattered in the r 

direction in terms of incident radiation from all directions, and can be expressed as: 
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where ψ(r, ri) is known as the phase function that accounts for the portion of radiation 

scattered from incidence direction ri  into r direction. It should be noted that when both 

scattering and absorption are present, the general solution of TAP(r) given by Equation 3.2 

requires the evaluation of an integral that involves the scattered radiometric temperature 

TSC(r), which itself has an integral form that requires knowledge of TAP(ri) incident from 

all directions over the 4π solid angle, which leads to complicated calculations. However, 

if scattering contribution is negligible, i.e., the single scattering albedo a<<1, the 

complexity of the problem can be substantially reduced, and under such condition, TAP(r) 

can be directly integrated.   

In the presence of rain, the applicability of the scatter free assumption within the 

Earth’s atmosphere depends on the density and the drop size distribution of the rain 
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droplets relative to the observation wavelength. Next, we focus the discussion on the 

interaction of rain particles with microwave radiation including extinction (attenuation), 

backscattering and emission effects. We first consider the interaction with a single 

spherical particle, then, we extend the discussion to treat a large number of particles 

within an atmospheric rain volume. 

The general mathematical solution for the scattering and absorption of EM waves 

by a dielectric sphere of arbitrary radius was first introduced by Mie in 1908, and applied 

to the context of rain by Gunn and East in 1954 [5]. For a spherical rain particle within 

the atmosphere, the scattering and absorption characteristics are governed by the radius 

of the particle, r, the wavelength, λ0, and the complex index of refraction, n.  

For a single raindrop particle whose size is much smaller than the EM wave 

wavelength, Rayleigh approximations to the exact Mie expressions applies. In this limit, 

the absorption cross section which is defined as the ratio of absorbed power to the 

incident power density (Qa = Pa/Si) is proportional to the cube of the particle diameter, 

and hence, proportional to the volume and mass of the rain drop, while the scattering 

cross section becomes negligible by comparison. As the size of the raindrop becomes 

comparable to the EM wavelength, its absorption per unit mass increases and scattering 

may no longer be ignored. 

In a rain volume, the individual particles (raindrops) are usually assumed to be 

randomly distributed, and therefore, their individual contributions can be summed 

incoherently to compute the scattering and absorption by a volume containing many rain 

particles. The range of different rain particle sizes within a rain mass is usually described 

by a continuous function, known as the drop size distribution p(r), which defines the 
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concentration of particles per unit volume per unit increment of the drop radius. In 

literature, the most widely used drop size distributions are Marshall-Palmer and Laws- 

Parsons distributions, which are in reasonable agreement with one another.  

The extinction and backscattering effects of rain volume on microwave radiation 

are characterized by the rain volume extinction coefficient (κe) and the rain volume 

backscattering coefficient (συ) [3, 5].   The rain volume extinction coefficient (κe) is 

defined as the total rain extinction cross section per unit volume. It has the units of 

(Np.m-3. m2 = Np.m-1), and can be expressed in terms of a dimensionless parameter (χ = 

2πr/λ0), and the drop size distribution p(χ) within the rain volume as 

 

( ) ( ) χχξχχ
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                                                   (3.6) 

 

where ξe is the Mie extinction efficiency, which is defined as the algebraic sum of the 

scattering and absorption cross sections, Qs and Qa respectively, normalized by the 

spherical raindrop cross section area (A = πr2), therefore 
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In practice, it is desirable to relate the rain volume extinction coefficient (κe) 

directly to the rain rate (R). A power law relationship of the following form is commonly 

used 
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b
e Rk ⋅=κ                                                                                 (3.8) 

 

where b is a dimensionless parameter, R is the rain rate in mm/hr, and k has the units of 

dB.km-1 per mm.hr-1. Both parameters k and b are dependant on the operating frequency. 

Typical values for k and b over a wide range of frequency are given by Olsen et al [23]. It 

should be noted that κe in dB.km-1 is obtained by multiplying κe in Np.m-1 by the constant 

4.34x103. 

The rain volume backscattering coefficient συ, which is often called the radar 

reflectivity, can be calculated using a similar form to Equation 3.6: 
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where ξb is the Mie backscattering efficiency, defined as ratio of the radar backscattering 

cross section σb to the cross section area of a spherical particle 

 

2r
b
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π
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In the Rayleigh region, an approximate expression for συ can be derived. For an 

individual rain particle of radius r, the radar backscattering cross section, σb, can be 

approximated as [5] 
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The complex quantity, K, is defined in terms of the complex refractive index of water, n. 

The factor 2K varies as a function of temperature and frequency. For example, over the 

00-200C temperature range and 1-10 cm wavelength range, 2K for water vary between 

0.89 and 0.93 [5]. 

In a rain volume containing Nv particles, the rain volume backscattering 

coefficient can be written by virtue of Equation 3.11 as 
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By definition, the reflectivity factor Z is given by 
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where di = 2ri is the diameter of the ith rain particle. Using equation above, and expressing 

di in units of meters, Z in mm6 per m3, λ0 in cm, leads to the simplified expression 

 

ZK ⋅⋅⋅= − 2
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λ
πσυ                                                             (3.15) 

 

since συ physically represents the total rain backscattering cross section in m2 per unit 

volume in m3, thus, it has the units of m-1. 

In literature, it is a common practice to relate the reflectivity factor Z [mm6/m3] 

directly to the rain rate R [mm/hr] via the well known Z-R relationships which have the 

following general form 

 

bRaZ ⋅=                                                                                   (3.16) 

 

where the parameters, a, and, b, depends on the drop size distribution within a given rain 

volume. 

In addition to its extinction and backscattering effects, the presence of rain in the 

atmosphere has a strong signature on the total emission of microwave radiation. To 

obtain a complete solution including scattering effects, the equation of radiative transfer 

must be solved numerically, however, in the centimeter wavelength region of the 

microwave spectrum, a rainy atmosphere can be considered a non scattering medium. In 

this case, the extinction coefficients of atmospheric gases, clouds and precipitation are 
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due primarily to absorption. The brightness temperature of a rain layer of vertical 

thickness, H, and physical temperature, Tp, can be approximated by 

 

( )1B PT T θ= − ϒ                                                                         (3.17) 

 

where θϒ is the transmissivity of the rain layer, given by 

 

secaHe κ θ
θ

−ϒ =                                                                            (3.18) 

 

The angle θ is measured from vertical. The total absorption coefficient, κa, consists of 

contributions due to precipitation, atmospheric gases and clouds. It is given by 

 

a p c gκ κ κ κ= + +                                                                       (3.19) 

 

The subscripts p, c and g refer to precipitation, clouds and gases respectively. Next, in the 

following two sections, a brief overview of the techniques commonly used for estimation 

of the oceanic rainfall using measurements from satellite-borne radiometers and 

scatterometers will be highlighted. 
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Oceanic Rainfall Estimation from Microwave Radiometer Observations 

 

Unlike infrared measurements which are sensitive only to uppermost layer of the 

clouds, passive microwave observations have shown high sensitivity to rainfall due to the 

direct interaction between hydrometeors and the microwave radiation which is capable of 

penetrating clouds and providing more insight into the rain structure. Early studies of 

estimating precipitation using radiometric measurements from space took place at the end 

of 1960s. The first microwave radiometers were single frequency instruments, and initial 

retrieval algorithms focused on the idea that a single frequency measurement can be used 

to estimate a single rainfall parameter related to rain rate or rain accumulation through 

idealized brightness temperature-rain rate relationships [24]. After the launch of the 

Scanning Multichannel Microwave Radiometer (SMMR) which was the first multi-

spectral microwave radiometer, launched onboard Nimbus-7 in 1978, retrieval algorithms 

reached a higher maturity level, and a door was opened for a new class of multi-channel 

algorithms in which different frequencies are used with the aid of an inversion scheme to 

retrieve a vector describing the rainfall profile [23]. In general, rainfall retrieval 

algorithms utilizing passive microwave observations can be categorized into four classes: 

The first class of algorithms makes use of the emission characteristics of rainfall 

against the relatively colder ocean background, thereby, they are known as emission 

based algorithms [25]. For a space-borne microwave radiometer, the ocean surface 

appears uniformly cold due to its low surface emissivity (~0.5 for typical frequencies). 

The presence of raindrops in the atmosphere tends to absorb and re-emit radiation, thus, 

increase the observed brightness temperature.  The emission type algorithms are more 



 50

suited to longer wavelengths, which tend to saturate at higher rainfall rates and are less 

sensitive to scattering effects. However, these algorithms are not applicable over land, 

where the emission signal is obscured by the high and variable surface emissivity. Also, 

the inhomogeneity of rainfall within the antenna footprint imposes a problem because of 

the coarse resolution of measuring frequencies. 

The second class of algorithms is referred to as scattering algorithms [26]. As the 

microwave frequencies increase, scattering effects which are mainly due to ice particles 

found in raining clouds become more dominant. The scattering effect tends to reflect the 

upwelling radiation back to the surface, thus, lower the observed brightness temperatures. 

This type of algorithms can work both over land and water surface, and enjoy a relatively 

better spatial resolution offered by the high frequency channels. However, since 

scattering algorithms infer rain based on an indirect measure related to the cloud ice 

content, scattering algorithms are more susceptible to regional and temporal biases 

compared to emission based algorithms. 

The third class of algorithms is the so called multi-channel regression algorithms 

[27]. These algorithms use theoretical radiative transfer calculations to derive the 

regression relationships. As a result, these algorithms become sensitive to the assumed 

vertical structure of the rain system, including cloud water, rain water and ice profiles. 

Moreover, these algorithms suffer from the same uncertainties found in aforementioned 

scattering algorithms.   

The final class of algorithms is commonly referred to as profiling algorithms [28]. 

These algorithms utilize a large data base of potential hydrometeor profiles along with a 

radiative transfer model to calculate the corresponding brightness temperatures. Once a 
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database of profiles and associated brightness temperatures is established, the retrieval 

portion of the algorithm employs an inversion scheme to estimate the entire vertical 

structure of precipitation, given the set of measured brightness temperatures. The major 

drawback of these algorithms is being computationally intensive. 

 

 

Oceanic Rainfall Estimation from Microwave Scatterometer Observations 

 

As noted previously, a scatterometer is a specialized radar calibrated to make 

accurate measurements of the normalized radar backscatter coefficient, σ0, of the Earth’s 

surface. Over the ocean, the primary application of the scatterometer σ0 measurements is 

to infer the speed and direction of the surface wind vector. The physical basis for the 

wind retrieval is the relationship between the radar backscatter measurements, σ0, and the 

wind induced surface roughness. This relationship has been empirically derived and 

known as the geophysical model function (GMF) [29]. 

 Traditionally, space-borne scatterometers are designed to operate at microwave 

frequencies in the C and Ku bands of the EM spectrum. Those microwave frequency 

bands are chosen to maximize the sensitivity to the surface wind, and minimize the 

atmospheric effects on the backscatter measurements. Although the atmosphere is nearly 

transparent to radiation at C and Ku bands under most weather conditions, the presence 

of rain can significantly modify the normalized radar cross section, σ0, of the ocean 

surface measured by a satellite-borne scatterometer.  
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 Rain is known to modify the strength of the scatterometer signal in three ways 

[30, 31]. Rain drops striking the ocean surface creates rings, stalks and crowns which 

cause additional surface scattering. Further, the presence of rain in the atmosphere 

introduces additional volume scattering and attenuates the transmitted microwave signal, 

and the signal backscattered from the surface. Depending on the relative magnitudes of 

the wind / rain combination, the aforementioned rain effects can degrade or even corrupt 

the oceanic wind retrieval process. This phenomenon is more pronounced on the 

backscatter measurements collected by Ku-band instruments as compared to C-band 

counterparts.      

  Therefore, in order to provide accurate retrievals of the oceanic wind vector from 

the σ0 backscatter measurements, it is necessary to correct the apparent σ0 measurements 

by removing the non-wind (rain related) effects of additional scattering and attenuation 

on the scatterometer microwave signal as it propagates through the atmosphere. For this 

purpose, studies have been conducted to identify (and correct where possible) the rain 

contaminated σ0 measurements for previous satellite-borne scatterometer missions. In 

some cases, the scope of the conducted research was expanded to exploit the rain 

sensitivity on the scatterometer signal to provide quantitative estimates of the rainfall 

over the oceans.  

Rain flagging and correction using brightness temperature measurements were 

attempted for the fan beam SEASAT scatterometer (SASS) σ0 observations that were also 

sampled by the SEASAT SMMR radiometer [32]. However, the SASS rain correction 

process was complicated by the low and variable (with frequency) measurement 

resolution of the SMMR compared to the SASS cell size, and also by the collocation 
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difficulties associated with differences in earth incidence angles between the SMMR / 

SASS measurements. 

 The SeaWinds scatterometer is the first space-borne radar utilizing the pencil 

beam design. A single rotating 1-m parabolic dish generates beams from two feeds: a 

horizontally polarized inner beam at 46º incidence, and a vertically polarized outer beam 

at 54.1º incidence. Compared to previous fan beam instruments, the pencil beam design 

not only allows operation at discrete incidence angles but also affords wide contiguous 

swath coverage, without a nadir gap.  

Rain effects on SeaWinds are found to be severe for low and moderate wind 

speeds [33]. If the geophysical model function (GMF) does not incorporate the rain 

scattering and attenuation effects, they are interpreted as wind induced features, which 

leads to systematic biases in the retrieved oceanic wind vector. The SeaWinds σ0 

measurements collected by polarized twin beams are particularly more sensitive to the 

presence of rain than previously flown scatterometers. The high rain sensitivity is mainly 

attributed to the Ku-band operating frequency and the large incidence angle pencil beam 

design of the SeaWinds instrument. While the SeaWinds rain sensitivity interferes with 

the measurement of the oceanic wind vector, it does however provide the instrument with 

an additional capability to estimate the rainfall over the oceans. 

 Several analysis studies have been conducted to investigate the rain sensitivity 

and quantify the impact of rain on SeaWinds scatterometer σ0 measurements. Stiles and 

Yueh from the Jet Propulsion Laboratory (JPL) assumed that rain effects can be modeled 

using a simple linear relationship between SeaWinds polarized backscatter 

observations, 0
m easσ , and the wind induced surface backscatter, 0

w indσ : 
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0 0 0
meas rain windσ σ α σ= + ⋅                                                               (3.20) 

 

where the coefficients of the linear relationship, α  and 0
ra inσ , represent the attenuation 

and the additional rain backscattering, respectively. These coefficients are rain dependent 

and empirically derived for each beam using collocated SeaWinds σ0 observations with 

SSM/I rain measurement, and the National Center for Environmental Prediction (NCEP) 

wind fields.  Stiles and Yueh determined that measurements from SeaWinds inner H-pol 

beam are more sensitive to rain than the outer V-pol beam. Also, they found that the 

sensitivity of both polarized beams to the presence of rain varies dramatically with wind 

speed.   

Draper and Long [30] at Brigham Young University utilized the same simplified 

model of (3.20) to evaluate the effects of rain on the SeaWinds backscatter 

measurements, and improve the wind estimation in the presence of rain. They used data 

from TRMM Precipitation Radar (PR) to derive the rain induced attenuation and 

backscattering as seen by SeaWinds. Using the simplified model, they identified three 

backscatter regimes: the first is where rain backscatter overpowers that of the wind, it 

will be only possible to accurately retrieve rain rates. In the second regime where wind 

induced backscatter dominates, only wind can be accurately measured. In the third 

regime where the contributions from rain and wind are of the same order, simultaneous 

retrieval of rain and wind will be possible.  

Another team of researchers (Weissman, Bourassa, O’Brien and Tongue) [33] 

studied the effects of rain on SeaWinds backscatter measurements by utilizing data from 



 55

National Data Buoy Center (NDBC) buoy measurements of wind, and ground based rain 

observations from National Weather Service Next Generation Weather Radar 

(NEXRAD).  They found, as did Draper and Long, that SeaWinds σ0 measurements are 

sensitive to the presence rain over the ocean. Also they believe that the dual polarization 

capability of the SeaWinds instrument might be helpful in rain detection process. 
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CHAPTER FOUR: SEAWINDS PASSIVE RAIN RETRIEVAL 
ALGORITHM  

 

 

Introduction 

 

The Ku-band microwave remote sensor, SeaWinds, was originally designed to 

measure the global ocean vector winds. Two identical SeaWinds instruments were 

launched into space. The first was flown onboard NASA QuikSCAT satellite which has 

been orbiting the Earth since June 1999, and the second instrument flew onboard the 

Japanese Advanced Earth Observing Satellite II (ADEOS-II) from December 2002 till 

October 2003 when an irrecoverable solar panel failure caused a premature end to the 

ADEOS-II satellite mission. In addition to measuring the radar backscatter, SeaWinds 

simultaneously measures the polarized microwave brightness temperature of the 

atmosphere / surface, and this passive microwave measurement capability is known as 

the QuikSCAT / SeaWinds (on ADEOS-II ) Radiometer (QRad / SRad).   

This chapter presents the development of a passive retrieval algorithm used to 

infer instantaneous oceanic rain rates using radiometric TB measurements from the 

SeaWinds instrument. This statistical algorithm is trained using near-simultaneous 

observations of major rain events by QRad and the Tropical Rainfall Measuring Mission 

(TRMM) Microwave Imager (TMI). The same retrieval algorithm is applied to twin 

SeaWinds sensors onboard QuikSCAT and ADEOS-II satellite missions, and denoted as 

QRad / SRad rain retrieval algorithm, respectively. While an additional source for rain 
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estimation was available from the passive measurements of the Advanced Microwave 

Scanning Radiometer (AMSR) sensor onboard the short-lived ADEOS-II satellite, the 

passive QRad measurements are the only radiometric source used to derive oceanic 

rainfall from the ongoing QuikSCAT satellite mission. The continuous (without nadir 

gap), wide swath coverage, along with the corresponding extended data set of oceanic 

rain measurements (since 1999 till present) afford QRad a significant scientific utility of 

improving the sparse sampling of rainfall over the oceans. Further, since SeaWinds is the 

only sensor onboard QuikSCAT satellite, the passive QRad rain estimates can be used as 

an independent flag for quality control purposes to identify rain contaminated wind 

vector measurements derived from SeaWinds. 

Following this introduction, a discussion of QRad oceanic sampling and its 

potential contribution to NASA’s future Global Precipitation Measurement (GPM) 

Mission is presented. The third section presents a detailed discussion of the statistical 

QRad (and by implication, SRad) rain algorithm. The passive QRad / SRad rain 

algorithms have been implemented in NASA Jet Propulsion Laboratory (JPL) level 2B 

(L2B) science data product. The QRad / SRad rain measurements are available from JPL 

Physical Oceanography Distributed Data Archive (PO.DAAC). 
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QRad Oceanic Rain Sampling and the GPM Mission  

 

For more than one decade, multi-frequency microwave radiometer imagers flying 

on low earth satellites have provided valuable day / night remote sensing of oceanic and 

atmospheric variables; but the emphasis on oceanic precipitation measurements achieved 

a significant advance with the launch of the Tropical Rainfall Measuring Mission 

(TRMM) observatory in late 1997. Because of TRMM’s non-sun synchronous orbit, for 

the first time, precipitation measurements were available from a satellite over all local 

times so that the diurnal cycle of oceanic precipitation could be studied. However, from 

1998 through late 2002, the ocean sampling was very sparse with only four such satellite 

instruments operating on-orbit; three Defense Meteorological Support Program (DMSP) 

satellites carrying the Special Sensor Microwave Imager (SSM/I), and the Tropical 

Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI). The SSM/I's fly on 

near-polar sun synchronous satellites that provide greater than 90% earth coverage daily; 

however, since they fly in a day / night terminator orbit, they provide only morning and 

evening sampling times.  On the other hand, the TMI flies in a low inclination (38°) non-

sun synchronous orbit that has been optimized to measure tropical rainfall.  TMI provides 

full diurnal sampling over the period of slightly greater than one month. However, even 

with the four passive microwave sensors, the statistics of oceanic rainfall were badly 

under-sampled. Since the fall of 2002, a fifth microwave imager, the Advanced 

Microwave Scanning Radiometer (AMSR-E) on NASA’s Aqua earth observing system 

satellite began its ocean precipitation measurements; but even with this additional 

radiometer, the diurnal sampling is still less than desired.  
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Many researchers (e.g., Wilheit et al.[25] ; Petty and Katsaros [34]; Bell and Reid 

[35]; Chang et al. [36]; Imaoka and Spencer[37]) have studied diurnal sampling of 

oceanic precipitation using satellite microwave radiometers.  Because of the sparse 

sampling, diurnal cycles must be estimated using large space-time averages, and likewise, 

it is difficult to determine the rainfall statistics for regional oceanic precipitation.  In the 

future, a constellation of satellites known as the Global Precipitation Mission (GPM), 

[38, 39], will solve this observational shortage.  This proposed constellation, comprised 

of satellites in low inclination and polar low-earth orbits (non-sun synchronous and sun 

synchronous), will provide near-global coverage with a worst case revisit time of three 

hours at the equator. An important aspect of GPM is the use of a highly capable "core 

observatory" (similar to TRMM) to provide rainfall classification and rain rate retrievals. 

This will be augmented by six or more less-capable "constellation" satellites carrying 

microwave radiometers, which are cross-calibrated to the core observatory, and provide 

the rapid temporal sampling of rainfall.  Thus, in the future, scientists and operational 

users will have to learn to accommodate rain retrievals of varying quality in their research 

and applications. 

In September 1999, the QuikSCAT Radiometer (QRad) began ocean precipitation 

measurements, which provides additional independent samples over SSM/I and TMI.  A 

typical example of the QRad sampling is shown in Figure 13 for a three-hour window 

(universal time: 00:00 - 03:00).  Also shown are the corresponding sampling coverage for 

TMI and three SSM/I's.  It is observed that QRad increases the coverage area by about 

10%; but even with five microwave imagers, the ocean sampling is still only 

approximately 60% in a typical 3-hour window.   
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Figure 13: Three hour sampling provided by 3-SSMI’s (F-13, F-14 & F-15), TRMM 
Microwave Imager and QuikSCAT Radiometer swaths for time window, 0 – 3 hours Zulu, 
on March 1, 2000. 
 

Never the less, the QRad’s sampling contribution is significant in that the daily 

average revisit time is reduced as shown in Figure 14. For clarity of presentation, 

sampling improvements, due to the QRad and averaged over 20º latitudinal zones, are 

quantitatively summarized in Table 3.  Further, an additional illustration of QRad oceanic 

sampling contribution is shown in Figure 15 which presents a typical scenario of “local 

time of day” QRad sampling over a 1°x 1° box located at equator and prime meridian for 

a period of one month. Also shown are the local time samplings for TMI and three SSM/I 

instruments. It is clear that QRad is providing independent sampling which complements 

and fills in the gaps between the sampling times of the other satellites. Thus, the QRad 

time series (from September 1999 to present) is a valuable addition to the ocean 
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precipitation climate data set. Further, the early availability of QRad rain measurements 

provides an excellent opportunity for learning how to utilize future GPM data sets. As 

will be described, even though the quality of the QRad rain retrievals are somewhat 

limited compared to TMI and SSM/I, they certainly are useful in that they provide 

additional temporal / spatial sampling. 

Moreover, the QRad rain estimates provide simultaneous, collocated precipitation 

measurements with QuikSCAT ocean surface wind vectors for rain-flagging 

contaminated wind vector retrievals. In the following section, the statistical inversion 

passive QRad rain rate algorithm is presented. The description given is also applicable to 

SeaWinds on ADEOS-II Radiometer (SRad) rain retrieval algorithm. 

 

 

Figure 14: Ocean sampling, daily average revisit time. Upper panel is TMI and 3-SSMI’s 
and lower panel is sampling with QRad added 
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Table 3: Average oceanic coverage in a typical 3-hour window. Improvements due to QRad  
contribution are calculated for regions of 20º latitudinal zones 
  

Region 
Ocean Coverage 

without QRad 

Ocean Coverage 

with QRad 

QRad 

Contribution 

40ºN - 60ºN 57.94 % 68.55 % 10.61 % 

20ºN - 40ºN 58.23 % 64.69 % 6.46 % 

0º - 20ºN 63.70 % 71.34 % 7.64 % 

20ºS - 0º 63.13 % 70.17 % 7.04 % 

40ºS - 20ºS 57.69 % 63.87 % 6.18 % 

60ºS - 40ºS 58.34 % 68.26 % 9.93 % 

 

 

Figure 15: Typical time of day sampling for SSM/I (F-13, F-14 and F-15), TMI and 
QuikSCAT Radiometer (QRad). Sample location is 1°x 1° latitude / longitude box located at 
equator and prime meridian. 
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QRad Passive Integrated Rain Rate Algorithm 

 

The QRad (henceforth, by implication, SRad) rain rate algorithm is a statistical 

based retrieval that uses an empirical passive brightness temperature - rain rate (TB-R) 

relationship to derive the integrated rain rate over the oceans [40]. Because the measured 

ocean brightness temperature is directly proportional to the path integrated rain rate, this 

is the chosen retrieved geophysical parameter. To calculate the average rain rate 

measured in mm/hr requires knowledge of the rain path length. Users may convert QRad 

integrated rain rate to surface rain rate by dividing by this rain path length that is equal to 

the height of the rain times the secant of the incidence angle. The QRad TB-R relationship 

was derived using a data set of rain events that were near-simultaneously observed by 

QRad and the TMI. In order to get a valid observation of the precipitation conditions 

affecting the QRad TB measurements, the collocation time difference for a given event is 

restricted to be less than ±30 minutes compared to the TMI observation. A simplified 

algorithm block diagram is presented in Figure 16. The data inputs are:  

1. The QRad TB's from the QuikSCAT level 2A (L2A) and the collocated numerical 

weather prediction (NWP) wind fields from the National Centers for 

Environmental Prediction (NCEP) which are obtained from the QuikSCAT level 

2B (L2B) data products available at (http://podaac.jpl.nasa.gov/quikscat/). 

2. A priori information in the form of monthly-tabulated ocean background 

brightness temperatures.  

mailto:L@A
http://podaac.jpl.nasa.gov/quikscat/
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Figure 16: A simplified QRad rain rate algorithm block diagram. 
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The individual polarized L2A QRad TB's, and the collocated L2B NCEP wind 

speed products are provided on a spacecraft measurement grid of wind vector cells at 25 

km resolution. These two products are used with the ocean background to calculate the 

excess brightness (Tex) upon which the rain retrieval is based. The passive QRad rain 

algorithm outputs an instantaneous rain rate product, by orbit revolution, at 25-km 

resolution wind vector cell (WVC) measurement grid. Further, the algorithm can output a 

five-day (pentad) rain rate average on a 0.25° x 0.25° Earth-located latitude / longitude 

grid. Both products are binned in 0.5 hour universal time windows. Next, the further 

details of the QRad rain algorithm will be presented. 

 

 

TRMM Training Data Products 

 

The QRad rain rate algorithm was trained using a data set of four hundred twenty 

one significant rain events that were observed within ± 0.5 hrs with TMI. The importance 

of such simultaneous observation is driven by the fact that the spatial structure and 

intensity of a typical rain event can rapidly vary with time, thereby, a close collocation 

time difference is essential in order to have a valid observation of the precipitation 

conditions affecting the QRad TB measurement. The collocated rain events are chosen 

from different seasons of the year 2000, having locations that span the full latitudinal 

range of the tropical rainfall region as shown in Figure 17.  
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Figure 17: Locations of simultaneous collocated rain events for 421 QRad / TRMM training 
data set. Collocation time difference is restricted to ±30 minutes. 

 

In the QRad algorithm development activity, we use the following TRMM 

products available through the TRMM Science Data and Information System (TSDIS) 

(http://tsdis.gsfc.nasa.gov):  

1. 2A12 product, TMI derived surface rain rate over oceans. 

2. 3A11 product, TMI derived monthly freezing level over oceans. 

We use the TRMM 2A12 product to provide surface rainfall rate to train the 

QRad rain algorithm. The 2A12 algorithm retrieves precipitation based upon nine 

channels of TMI brightness temperature [28]. This algorithm uses a Bayesian approach 

that utilizes cloud resolving models to generate a large database of potential hydrometeor 
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profiles and a microwave radiative transfer model to compute the corresponding TMI 

channel brightness temperatures. This algorithm generates vertical hydrometeor profiles 

on a pixel basis. For each pixel, cloud liquid water, precipitation water, cloud ice water, 

precipitation ice, and the latent heating are given at 14 vertical layers. The surface rainfall 

and associated confidence are also computed. 

We use the TRMM 3A11 product to estimate the height of the rain over the ocean 

for use in the QRad algorithm. The TMI 3A11 algorithm [25] also uses the TMI 

brightness temperatures to infer the freezing level, which is the estimated height of 0°C 

isotherm over oceans in 5° x 5° boxes for one month. It also produces 5° x 5° monthly 

oceanic rainfall maps using TMI Level-1 brightness temperatures. 

 

 

Passive Excess Brightness Temperature (Tex) Model 

 

Due to their low emissivity; ocean surfaces appear as relatively uniform cold TB 

backgrounds at low frequency satellite microwave radiometer observations. The presence 

of rain in the atmosphere tends to absorb and re-emit microwave radiation, and as a 

result, the oceanic microwave brightness temperature when viewed through a raining 

atmosphere is greater than that when viewed through a clear atmosphere. Rain can be 

inferred from the differential (excess) part between the raining and clear ocean TB; so the 

extraction of the rain signal depends directly upon the knowledge of the ocean brightness 

when viewed through an intervening atmosphere without rain.  
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The brightness temperature observed by the satellite microwave radiometer is 

determined by the electromagnetic frequency, polarization, incidence angle and by a 

number of atmospheric geophysical variable profiles including temperature, oxygen 

density, water density (vapor, cloud liquid and rain) as well as the ocean surface 

geophysical variables: sea surface temperature, salinity and surface wind speed. The 

usual remote sensing scenario is for the observing microwave radiometer to have the 

number of independent measurements greater than the number of unknown geophysical 

parameters. For example, according to Wentz and Spencer [41], they use 7 SSM/I 

channels to retrieve 4 parameters; surface wind speed, integrated water vapor, integrated 

cloud liquid water and path average rain rate. Parameters that contribute significantly to 

the brightness but are not retrieved are known a priori, frequently from climatology or 

numerical models. 

Mears et al. [42] have characterized the monthly mean ocean TB for the QRad 

channels using seven years of measurements from the SSM/I. This ocean brightness 

temperature climatology accounts for all of the geophysical parameters except the 

transient effects of rain and surface winds (which have been removed in the data 

analysis). Fortunately, the Ku-band (13.4 GHz) TB responds weakly to the atmospheric 

and surface geophysical parameters included in this climatological background. Further, 

all of these parameters vary slowly in space and time (seasonally). As an example, the 

dynamic range of the horizontally polarized ocean background temperature with latitude 

for the month of March is (91 K ~ 103 K), while the vertically polarized ocean 

background temperature for the same month lies in the range (165 K ~ 182 K). In both 

cases, the longitude variations are almost flat.  
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On the other hand, rain and wind are very transient with weather systems, and 

they need to be retrieved simultaneously. Because there are only two QRad channels (V- 

and H-pol), we use the ocean (and atmosphere) brightness climatology as a priori 

information in conjunction with collocated Numerical Weather Prediction (NWP) wind 

speed measurements from the National Centers for Environmental Prediction (NCEP). 

We define the rain contribution to the measured brightness temperature as the "excess 

brightness" (Tex) which is equal to the residual of the average measured QRad TB after 

subtracting ocean background brightness temperature (which includes non-raining 

atmosphere) and the brightness temperature due to the surface wind speed. Thus, the 

polarized Tex is: 

 

.ex p B QRad p B Ocean p B W speed pT T T T− − − −= − −                           (4.1) 

where  

 

1

1 n

Bi
i

BQRad n
T T

=

= ∑ , is the average measured QRad TB ,  K.     (4.2) 

 

n                   number of pulses within a Wind Vector Cell (WVC). 

TB Ocean        ocean background TB,  K. (includes atmosphere without rain) 

TB W.speed    TB due to the wind speed, K. 

p          polarization. 
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The ocean background is interpolated to the day of the observation using monthly 

latitude / longitude tables at 0.25° spatial resolution. The NCEP ocean surface wind 

speeds are obtained from QuikSCAT L2B data files [43]. They are used in our analysis to 

provide an estimate of the wind induced brightness contribution (TB Wspeed) to the QRad 

brightness temperature measurement. The NCEP winds are interpolated from 2.5º global 

latitude / longitude grid to the SeaWinds WVC locations. It is commonly known in 

literature that the 1000 mbar NCEP wind speeds are somewhat biased high compared to 

the 10 m neutral stability wind measured by SeaWinds. To adjust for the bias, a 

multiplicative constant is determined using linear regression analysis over rain free (as 

verified by TMI) QuikSCAT / NCEP collocated winds. The bias correction constant is 

determined as 

 

0.84QuikSCAT NCEPws ws= ×                                                (4.3) 

 

In order to derive an estimate for the wind speed contribution (TB Wspeed) in 

Equation (4.1), we use background corrected QRad TB measurements along with 

collocated, bias-adjusted NCEP wind data over rain free scenarios (as verified by TMI 

observations). Next, the collocated data are bin averaged by NCEP winds in 0.5 m/s steps 

to estimate a first order brightness correction using least squares analysis 

 

 . 0 1BW speed p p pT a a wspd− = + ⋅                                   (4.4) 
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where 

a ip    are empirical wind speed coefficients (p = V-pol & H-pol) given in  

Table 4. 

wspd  is the collocated, bias adjusted NCEP ocean surface wind speed, m/s 

 

The derived first order brightness temperature corrections (H-pol & V-pol) due to 

the surface wind speed are depicted in Figure 18. Typical values for the polarized 

brightness temperature (TB Wspeed) due to a wind speed measurement of 8 m/s are 4.82 K 

for the H-pol, and 1.42 K for the V-pol.  

 

 

Passive Excess Brightness - Integrated Rain Rate Relationship 

 

The passive QRad rain rate algorithm is a statistical based retrieval that uses an 

empirical brightness temperature - rain rate (TB-R) relationship. This relationship is 

derived using a QRad brightness temperature and TMI integrated rain rate data set from 

four hundred and twenty one significant rain events that are observed within ± 0.5 hrs.  In 

the propagation direction, the total atmospheric absorption and emission of microwave 

energy is directly proportional to the rain path length; thus, the observed rain brightness 

temperature is proportional to the integrated rain rate.  

The TB-R relationship is calculated using a regression analysis of the QRad excess 

brightness (Tex ) with the corresponding collocated TMI integrated rain rate (IRR). First, 
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the polarized QRad Tex are produced on a 25 km WVC measurement grid using Equation 

(4.1). As noted previously, since the SeaWinds instrument design was optimized as radar, 

QRad is not a high performance radiometer. While typical radiometers have bandwidths 

of 100’s MHz, QRad has a limited receiver bandwidth of about 750 KHz, which results 

in a poor radiometric precision ∆T ~25 Kelvin per pulse. Therefore, the polarized QRad 

Tex measurements are smoothed using a weighted 3x3 spatial averaging filter to reduce 

the unwanted random noise component of the measurement, thereby, improve the 

effective radiometric precision (∆T) of the measurements. 

Next, the TMI 2A12 surface rain rates are converted to IRR and collocated with 

the corresponding QRad WVCs that included the center of the TMI measurement. 

Because the TMI integrated rain rate value is not available in 2A12, the IRR is 

approximated to be the product of the TMI surface rain rate (mm/hr) and the rain path 

length (km).  For this calculation, we use the TMI retrieved freezing level (TMI 3A11 

product) as the rain height interpolated to the corresponding QRad WVC locations and 

multiply by the secant of the TMI incident angle (52.8°).  As an example, a typical 

average value for rain height near the equator during the month of March 2000 is about 

4.9 km. 

Finally, the WVC collocated data are binned by TMI IRR, averaged and then used 

in a least-squares curve fit procedure to determine an optimal 3rd order polynomial. This 

polynomial is forced to pass through the origin producing a zero rain estimate in response 

to a null Tex measurement. The estimated coefficients are provided in Table 5, and the 

resulting transfer functions for SeaWinds twin beams are depicted in Figure 19.  
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Figure 18: QRad brightness temperature correction due to surface wind speed. Upper panel 
depicts the correction applied to the H-pol inner beam, and the lower panel shows the 
correction for the outer V-pol beam. Diamonds denote binned / averaged data. 
 

 

 

 

Table 4: Regression coefficients for empirical excess brightness temperature - wind speed 
relationship 
 

 b0 b1 

H-pol 1.0156 0.4752 
V-pol 3.2834 -0.2332 
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Figure 19: QRad (Tex – R) 3rd order transfer function for H- pol (upper panel) and for V- 
pol (lower panel). Diamonds denote binned / averaged data. 
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Table 5: Passive integrated rain rate - excess brightness temperature regression coefficients. 
 

 b0 b1 b2 b3 

H-pol 0 0.3649 0.0169 -0.0001 
V-pol 0 0.4643 0.0455 -0.0003 

 

 

QRad Integrated Rain Rate 

 

The integrated rain rate is calculated from the polarized Tex using the TB-R 

relationship given as: 

 

2 3
0 1 2 3* * *p p p p p p p pIRR b b Tex b Tex b Tex= + + +           (4.5) 

 

 where 

bi      regression coefficients, given in Table 5.  

 

The final QRad rain rate product is a weighted-average of the polarized rain rates. 

The usual procedure is to weight measurements by their inverse variances; but for QRad, 

the variances for V- and H-pol are somewhat similar. Due to their higher sensitivity to the 

presence of rain, the QRad H-pol Tex measurements are known to have a relatively wider 

dynamic range compared to their V-pol counterparts. This can be explained by the fact 

that the H-pol EM radiance is more sensitive to rain drops since those drops tend to 

flatten into oblique spheroids as they fall toward the surface.   
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In addition to the H-pol and V-pol weighting factors, the QRad algorithm has 

provisions for fine tuning against TMI rain measurements in the form of a linear slope 

and offset coefficients. Hence, the final QRad rain rate product (km*mm/hr) has the 

following form:  

 

                 (4.6) 

 

Where:  

α, β are empirically derived H-pol / V-pol weighting factors expressed as percentages 

with values of 0.86 and 0.14, respectively. 

c1, co are empirically derived slope and offset calibration to adjust the resulting QRad 

IRR to match the TMI IRR for the training data set. In the current version of the 

algorithm, co and c1 have values of approximately zero and unity respectively. In order to 

determine the values of different calibration parameters: c0, c1, α, β in Equation (4.6), a 

numerical optimization routine is utilized to minimize the mean square error (MSE) 

between the TMI IRR and the resulting QRad IRR over the algorithm training data set. 

 By inverting the (TB – R) transfer functions given by Equation (4.5), and utilizing 

the empirical wind induced brightness temperature relationship of Equation (4.4), the 

total polarized excess brightness (above background TB) observed by QRad is simulated 

and shown in Figure 20 as a function of the integrated rain rate and surface wind speed. 

Also shown on the figure (in solid red) is the locus of the total excess TB points where the 

rain induced contribution is equal to 50 % of the simulated total polarized excess TB 

measurement. It can be readily seen from the figure that under most rain / wind 

( )vhQRad IRRIRRccIRR ⋅+⋅+= βα10
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combinations, the TB response of QRad twin beams is mainly rain dominated. For 

example, as the upper panel of Figure 20 illustrates, once the rain rate exceeds the 

threshold of 15 km* mm/hr, the rain induced excess TB contribution observed by QRad 

inner H-pol beam is more than 50 % of the total measured excess TB regardless of the 

brightness contribution due to the wind speed blowing over the ocean surface.         

A quantitative comparison between the QRad and TMI IRR's for the four hundred 

and twenty one rain events is presented as a scatter diagram in Figure 21.  As the figure 

depicts, the derived QRad IRR’s have a considerable scatter especially at the higher rain 

rates, which is mainly attributed to the coarse QRad (∆T) measurement, however, the 

QRad IRR’s are well behaved in the mean compared to TMI. This can be verified by 

smoothing the scatter diagram in steps of 5 km mm/hr (~ 0.6 mm/hr) shown as blue 

diamonds on the figure.  This may be also verified by examining in the statistics of 

differences (QRad minus TMI) presented in Table 6.  For this comparison, we use the 

same data as Figure 21; but now we bin the data in six ranges of TMI IRR.  The mean of 

the individual histograms is near zero, that verifies the TB-R least mean squares 

regression procedure; however the standard deviations are large as a result of the poor 

QRad ∆T. 

Additional quantitative comparisons between TMI and QRad for the four hundred 

and twenty one rain events are presented in terms of the IRR probability density functions 

(pdf's) and cumulative distribution functions (cdf's) shown in Figures 22 and 23, 

respectively. The large ∆T causes some distortion in the QRad pdf especially for high 

IRR; however, this does not produce a significant accumulation error as seen by 

examining the QRad cdf. 
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Since the QRad rain rate algorithm is applicable only over the ocean, we use a 

conservative land mask with extended land boundaries (and small islands deleted) to 

determine where the rain rate algorithm is applied.  Unfortunately, when QRad 

measurements are close to land, the measured TB is also affected by the "hot" radiance 

from land that enters through the antenna pattern side-lobes.  Thus, within about 150 km 

of land, the measured QRad TB has a land bias of about +5 to +10 K.  To compensate for 

this effect, the background brightness temperature over the land is set to its typical value 

of 270K, and the ocean/land background is smoothed using a 3 x 3 pixel window to 

eliminate the effect of the sharp land-ocean boundary.  In this way, the ocean brightness 

temperature near the boundary is elevated in an attempt to remove the influence of land 

on measured Tex.  The final step is to evaluate the monthly rain rate at all land/water 

boundaries and identify anomalous negative rain rates, when ocean background is too 

high; and positive rain rates, when ocean background is too low. The final land mask is 

subjectively adjusted to remove these anomalous rain rates that may result along the land 

borders. 
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Figure 20: Contour plots of simulated total excess TB measurements observed by QRad 
inner H-pol beam (upper panel) and the outer V-pol beam (lower panel) as a function of the  
integrated rain rate and wind speed. 
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Figure 21: Instantaneous integrated rain rate comparisons for four hundred twenty one 
collocated rain events for QRad and TMI. Spatial resolution is 0.25° (25 km). 
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Table 6: Instantaneous integrated rain rate (km*mm/hr) differences for six TMI ranges.  
For each range, the difference (QRad minus TMI) is calculated. 
 

TMI Range Number of points Difference mean 
Difference  

std 

Difference 

rms/<TMI> 

0 – 4 112190 0.8780 3.2018 2.9465 

4 – 8 28366 0.4222 6.5841 1.1430 

8 – 12 15798 0.3413 8.9964 0.9136 

12 – 24  24081 1.2614 14.1051 0.8317 

24 – 32 7220 1.0704 20.9018 0.7581 

> 32 11522 -1.3409 30.3480 0.5955 

 

 

Figure 22: Probability density function for integrated rain rate at four hundred twenty one 
collocated rain events for QRad and TMI. 



 82

 

 

 

 

Figure 23: Cumulative distribution function for integrated rain rate at four hundred twenty 
one collocated rain events for QRad and TMI. 
. 
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CHAPTER FIVE: VALIDATION OF PASSIVE QRAD RAIN 
ALGORITHM 

 

 

Introduction 

 

In this chapter we evaluate the performance of the passive QRad rain rate retrieval 

algorithm. The evaluation activity is performed through comparisons with independent 

rain measurements from the TMI 2A12 surface rain rates, and the TRMM 3B42RT 

composite microwave and visible / infrared near-real time data product. Results 

demonstrate that QRad rain rate measurements are in good agreement with these 

independent microwave rain observations and superior to the visible / infrared rain 

estimates.  

Therefore, the QRad rain measurement time series (from 1999 till present) is a 

valuable addition to the oceanic precipitation climatology that can be used to improve the 

diurnal estimation of the global rainfall, which is a goal for NASA’s future Global 

Precipitation Mission (GPM) program. Moreover, the availability of QRad data will 

provide GPM users early access to learn to use less-precise rain measurements that will 

occur in the GPM era with the use of less-capable constellation satellites. The QRad rain 

algorithm has been implemented in JPL level 2B (L2B) science data product as part of 

QuikSCAT winds data reprocessing to improve the rain flagging of rain-contaminated 

oceanic wind vector retrievals. 
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Validation Data Products 

 

TMI, an improved design of the SSM/I instrument, is dedicated to obtaining 

quantitative measurements of rainfall.  The oceanic instantaneous rain rate, measured by 

the TMI is widely accepted by the science community to be the best estimate of the true 

rain rate available from a passive microwave sensor. Thus, to evaluate the QRad retrieved 

rain rate capabilities, we use the TRMM 2A12 instantaneous surface rain rate and the 

TRMM 3B42RT surface rain rates for the comparison data set. The TMI 2A12 

instantaneous rain rate product has been validated by the TRMM science team through 

numerous comparisons with other independent rain measurements [44]. The TRMM 

3B42RT data product [45] available from (ftp://aeolus.nascom.nasa.gov/pub/merged) 

combines precipitation estimates in global 3 hour universal time windows ( ± 90 minute 

span around synoptic observation hours 00 UTC, 03 UTC, 06 UTC, …, 21UTC). These 

estimates are derived from all available high quality (HQ) microwave sources from low 

earth orbits (three SSM/I’s and TMI) combined with visible and infrared rain rate (VAR) 

estimates derived from geostationary visible / infrared observations. For each 0.25° grid 

point the HQ rain rate estimate is used, if available; otherwise the VAR value is used. 

The 3-hour temporal resolution is driven by the need for the HQ to accumulate a 

reasonable sample without encompassing a large fraction of the diurnal cycle. The 

TRMM 3B42RT is based on the Goddard Profiling Algorithm (GPROF) [28, 46]. 

GPROF is a multi-channel physical approach for retrieving rainfall and vertical structure 

information from passive microwave satellite observations. It applies a Bayesian 

inversion method to the observed microwave brightness temperatures using an extensive 
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library of cloud model based relations between hydrometeor profiles and microwave 

brightness temperatures.  Each hydrometeor profile is associated with a surface 

precipitation rate.  GPROF includes a procedure that accounts for inhomogeneities of the 

rainfall within the satellite field of view. The GPROF-SSM/I estimates are computed 

from the SSM/I satellite data records (SDRs), while the GPROF-TMI estimates are 

computed by TSDIS as 2A12RT. The GPROF-SSM/I estimates are calibrated and 

probability matched to 2A12RT. The VAR infrared precipitation estimate are HQ-

calibrated locally in time and space. The TRMM 3B42RT rain rates are adjusted to 

remove bias via histogram matching. Here, we use rain estimates from the TRMM 

3B42RT high quality (HQ) microwave sources as the rain “surface truth” for the QRad 

validation activity.  

Also, we use SSM/I rain products provided by Remote Sensing Systems 

(http://www.remss.com) for quantitative comparisons with the average QRad rain 

product. SSM/I rain products have been validated against independent rain measurements 

as reported by [41]. Next, we present subjective evaluations for the two QRad 

precipitation data products. 

 

 

Instantaneous Rain Rates 

 

A typical instantaneous rain image example is given in Figure 24. The upper 

panel shows the TMI / QRad near-simultaneous overlapping swaths. Both satellites were 
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in descending revs and observed the rain event within ~ 20 minute pass time difference. 

The corresponding rain images are given in the lower panel.  For clarity of presentation, 

both rain images were resampled to 0.125° resolution.  The color bar on the right side 

indicates the rain rate values (mm/hr); and both rain images have identical color scales 

for retrieved rain rates. The shape and intensity of the rain event were well captured by 

QRad. In fact, the correlation coefficient for the two images is found to be 89.7%. 

Another instantaneous rain image comparison between QRad and the TMI 2A12 

surface rain product is presented in Figure 25. The rain event was observed on April 19 

2003 within 10 minutes of the TRMM overpass. The upper left panel shows the TMI 

integrated rain rate, and the corresponding QRad rain estimate is given in the upper right 

panel. The pixel resolution is 25 km on a WVC measurement grid. Color scales are 

identical for both images and proportional to the integrated rain rates in (km*mm/hr). To 

reduce the possible occurrence of false rainy pixels resulting from the noisy QRad (∆T), 

we apply a threshold of 2 km*mm/hr on both integrated rain values (equivalent to ~ 0.25 

mm/hr). This threshold is empirically derived to optimize the spatial rain patterns as 

observed by QRad (compared to TMI) over the collocated training data set. It is observed 

that the shape and the relative intensity of the rain are well captured by QRad. For this 

particular event, the correlation coefficient is found to be 90%. 

 In order to quantify the performance of QRad measurements as a stand alone flag 

for identifying the rain contaminated wind vector retrievals, we produce binary maps that 

are quantized into four levels to classify the rain pattern for the given collocated rain 

event, as shown in the lower panel of Figure 25. Using the TMI binary rain image as the 

surface truth, we classify the pixels of the binary rain image into three categories: the first 
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is agreement percentage, which is the percentage of pixels that are simultaneously 

identified by both sensors (QRad and TMI) as raining pixels or non raining pixels. The 

second category is the false alarm percentage, which is the percentage of pixels classified 

as raining pixels by QRad, while identified as non raining pixels by TMI. The third 

category defined as miss-rain percentage is the percentage of pixels classified as raining 

pixels by TMI, while QRad identified those pixels as rain free. The different percentages 

of the rain pattern classification are calculated for the event under consideration, and 

found to be as follows:  the agreement percentage = 92.89%, false alarm percentage = 

4.46%, and miss-rain percentage = 2.65%. These results emphasize the utility of QRad 

rain measurements as a powerful stand-alone rain flag. 

Additional evaluations of the instantaneous QRad retrieval algorithm consisted of 

comparisons with the high quality merged TRMM 3B42RT real time multi-satellite 

precipitation data product. A hundred and eight significant rain events that were observed 

by QRad and HQ microwave radiometers are used as an additional independent data set 

for this validation activity. Overall the rain intensity and spatial rain patterns were well 

captured by QRad and the correlation coefficients between corresponding rain images 

was typically > 70%. 

The first quantitative comparison for these hundred and eight rain events is 

presented as a scatter plot in Figure 26. Statistical results of the differences (QRad minus 

HQ) are presented in Table 7, where we bin the data in five ranges of HQ rain rate. 

Although the standard deviations for the individual bins are large due to the poor QRad 

∆T, the retrievals are well behaved in the mean.  
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The second quantitative comparison for the hundred and eight rain events is 

presented in terms of the rain rate probability density functions (pdf’s) shown in Figure 

27. Clearly, the large ∆T causes some distortion in QRad pdf for low rain rate values; 

however, for larger rain rates > 2.5 mm/hr, the QRad pdf captures the behavior of the HQ 

rain rate distribution. 

 

Figure 24: Example of instantaneous rain rate images produced by QRad and TMI. Spatial 
sampling is 0.125° (12.5 km), and coincidence time difference is ~20 min. 
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Figure 25: A second example of a rain event measured by TMI 2A12 product (top left 
panel) and QRad (top right panel). Spatial resolution is 25 km (WVC measurement grid) 
and coincidence time difference ~ 10 minutes.  Lower panel depicts the corresponding rain 
pattern classification. Classification categories include: agreement (color indices 0, green & 
2, deep red), false alarm (color index 1, orange) and miss rain (color index -1, blue). 
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Figure 26: Instantaneous rain rate comparisons for a hundred and eight collocated rain 
events for QRad and TRMM 3B42RT HQ (TMI and SSM/I) product. Spatial resolution is 
0.25° (25 km) and coincidence time difference is < 75 minutes. 



 91

Table 7: Instantaneous rain rate (mm/hr) differences for five TRMM 3B42RT HQ data 
ranges.  For each range, the difference (QRad minus HQ) is calculated. 
 

HQ Range Number of points Difference mean 
Difference  

std 

Difference 

rms/<HQ> 

0 – 1 14582 0.5330 0.9548 2.6428 

1 – 2 7842 0.3571 1.7383 1.2278 

2 – 4 6492 0.1350 2.7590 0.9736 

4 – 8  3637 -0.5062 4.0268 0.7385 

> 8 1939 -4.2267 8.9058 0.7218 

 

 

Figure 27: Rain rate probability density function for a hundred and eight collocated rain 
events for QRad and TRMM 3B42RT HQ (TMI and SSM/I) product 
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Next, we present sample image comparisons of collocated rain events of QRad 

and HQ retrieved rain rates. Although these collocated rain events are obtained from the 

3-hour UTC windows, we utilize a satellite orbit database, along with specialized 

collocation tools to estimate the overpass time differences between QRad and HQ 

observations. These collocations span a period of about two weeks during the month of 

June 2003. First, the QRad rain was put into 3-hour universal time windows (± 90 minute 

span around synoptic observation hours 00 UTC, 03 UTC, 06 UTC, … , 21 UTC). Then, 

the resulting time binned rain images were gridded to a 0.25° x 0.25° latitude / longitude 

Earth measurement grid to match the HQ rain product resolution.  

The upper panel in Figure 28 shows a collocated rain event with low rain values 

that was observed on June 18 2003 during the 06 UTC time-window where the 

coincidence time differences are < 35 min. The QRad rain rates are shown on the right 

side, while the HQ rain rates are shown on the left side, and the color bars indicate the 

rain rate (mm/hr) values. The correlation coefficient between the two images is 85%. The 

lower panel shows a second collocated rain event with moderate rain values that was 

observed on June 21, 2003 during the 06 UTC time-window where the coincidence time 

differences are also < 35 min. For this case, the spatial correlation coefficient is 75%. A 

third rain image comparison presented in the upper panel of Figure 29 represents an 

example of high rain rate that was observed on June 24, 2003 during the 15 UTC time-

window where the coincidence time differences are < 60 min. The correlation is found to 

be 80%. The last collocated rain event example is shown in the lower panel of the same 

figure. This rain event was observed on June 25, 2003 during the 15 UTC time-window 
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where the coincidence time differences are also < 60 min. The correlation coefficient for 

this event is found to be 85%.  

In general, there is very good spatial correlation between QRad and HQ rain 

patterns.  Because of the smaller IFOV and lower ∆T, the HQ images are "crisper"; 

nevertheless, the shape and relative intensity of the rain events are well captured by the 

QRad images. On an absolute basis, the QRad underestimates the higher rain rates 

because of the non-linear effects of beam filling.  Further, the effects of the high ∆T 

result in "noisy pixels" that is apparent in the QRad rain images.  Most differences 

between HQ and QRad are attributed to errors in the QRad retrievals; however some 

differences may be "real" in that they could be the result of the different pass times of 

QRad and HQ over the rain events.  

 When compared to rain measurements obtained form visible / infrared satellite 

observations, microwave based QRad rain estimates perform superbly. As an example, 

Figure 30 presents two collocated rain events between QRad and the TRMM 3B42RT 

VAR data product. The QRad rain rates are shown on the right side, while the VAR rain 

rates are shown on the left side. The color bars are proportional to the rain rate (mm/hr) 

values. For these comparisons we apply a conservative threshold of 1 mm/hr to QRad 

rain rates to eliminate any random bogus rain pixels. In both cases, it can be seen that the 

VAR rain estimates failed to detect a significant portion of the low and moderate rain 

event structure. These examples are quite typical, and they emphasize the superior 

performance of the microwave rain retrievals compared to rain estimates from visible and 

infrared sources. 
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Figure 28: Examples of rain events measured by QRad (right) and TRMM 3B42RT HQ 
(TMI and SSM/I) product (left). Spatial resolution is 0.25° (25 km) and coincidence time 
difference < 35 min. 
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Figure 29: Other examples of rain events measured by QRad (right) and TRMM 3B42RT 
HQ (TMI and SSM/I) product (left). Spatial resolution is 0.25° (25 km) and coincidence 
time difference < 60 min. 
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Figure 30: Typical examples of near-simultaneous collocation cases for QRad (right) and 
TRMM 3B42RT VAR (visible and infrared) product (left). Spatial resolution is 0.25° (25 
km). 
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Averaged Rain Rates 

 

For the average rain rate product, we perform temporal (pentad) and spatial (0.5° 

x 0.5°) averaging of all instantaneous rain rate values which significantly reduces the 

random component of the rain retrieval.  As an example, Figure 31 shows the average 

rain rate for March 2000, produced from QRad, TMI and SSM/I-F13, averaged over the 

global region ±40° latitude on a 0.5° x 0.5° latitude / longitude grid. As the spatial 

resolution decreases (i.e., spatial averaging area increases), the correlation improves. An 

example of the differences between the three rain rate retrievals for 0.5° x 0.5° for March 

2000 is presented in Figure 32, and the statistical measures for these cases are given in 

Table 8.  Here, there is excellent agreement between TMI and SSM/I and quite 

reasonable comparisons for both with QRad.  Most of the difference occurs in the vicinity 

of the Inter-Tropical Convergence Zone (ITCZ) area where the convective rain activity 

predominates. In general, there is excellent correlation between the spatial patterns of 

rain; however there are fine scale differences due to the larger spatial resolution of QRad, 

and its poorer radiometric precision (∆T). Nevertheless, the shape and the relative 

intensity of the rain are well captured by QRad. 

Finally, Figure 33 shows a time series of QRad and TMI zonal five-day (pentad) 

rain rates, averaged over the tropical ocean from 0° N to 20° N.  Pentad averages were 

calculated for about nine months during January 2000 through September 2000.  

Although QRad slightly over estimates the rain rate, there is high correlation between 

these two time series (~ 86%), and this result is in excellent agreement with a similar 

study of Imaoka and Spencer [37] between pentad averages for TMI and SSM/I. 
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Figure 31: Monthly rain images produced by QRad, TMI and SSM/I F13 for March 2000. 
Spatial resolution 0.5º (50 km). 
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Figure 32: Monthly, global, 0.5° x 0.5° spatially averaged, rain rate differences for March 
2000. From the left are: QRad-TMI, SSM/I-TMI, and QRad-SSM/I. 
 
 

 

 

Table 8: Monthly average rain rate (mm/hr) differences between QRad/TMI, SSMI/TMI, 
and QRad/SSMI for March 2000. 
 

Difference 
Number of 

points 

Difference 

mean 

Difference 

std 

QRad - SSMI 75463 9.877 e-2 2.50 e-1 

QRad - TMI 75463 1.148 e-1 2.78 e-1 

SSMI - TMI 75463 1.892 e-2 2.56 e-1 
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Figure 33: Zonal averages (0° N to 20° N) of five day (pentad) average rain rate for QRad 
and TMI from January 2000 through September 2000. 
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CHAPTER SIX: MODELING SEAWINDS ACTIVE BACKSCATTER 
MEASUREMENTS IN THE PRESENCE OF RAIN 

 

 

Introduction 

 

 The scatterometer SeaWinds is a Ku-band microwave sensor that was originally 

designed as a specialized radar to measure the speed and direction of the near-surface 

wind vector over the ocean. SeaWinds employs a conical scanning, dual polarized pencil 

beam antenna system to collect the normalized radar cross section (σ0) measurements 

from the Earth’s surface. The inner beam is horizontally polarized (H-pol) with an 

incidence angle of 46º, while the outer beam is vertically polarized (V-pol) with nominal 

incidence of 54.1º. The SeaWinds conical scan design affords continuous wide swath 

coverage of about 1800 km, without a nadir gap.  

Once the σ0 measurements are made, the oceanic wind vector retrieval process is 

performed by inverting a geophysical model function (GMF) relating the radar 

backscatter and near surface vector wind. The GMF exhibits a bi-harmonic (cos 2χ) 

dependence on wind direction; therefore, multiple σ0 measurements from several azimuth 

angles are required to determine the wind vector. Due to the noisy σ0 measurements and 

the periodic nature of the GMF, multiple wind vector estimates (aliases) may exist. To 

select a unique solution, a post estimation procedure known as dealiasing is required.  

In rain free, moderate wind speed regions, winds estimated by the SeaWinds 

scatterometer are proven to be remarkably accurate. However, in the presence of rain, the 
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accuracy of the retrieved wind vector can be adversely degraded. The impact of rain on 

scatterometer σ0 measurements is threefold: first, rain drops falling on the ocean surface 

perturb the surface and alter the wind induced backscatter signature. Second, the 

atmospheric rain volume generates additional backscatter, which augments the radar 

backscatter from the surface. Third, rain has a two-way attenuation effect on the 

scatterometer signal passing through the rain volume.  

Operating at a Ku-band frequency of 13.4 GHz, the SeaWinds scatterometer is 

more susceptible to rain effects compared to its counterpart C-band scatterometers. The 

impact of rain on the backscattered signal measured by SeaWinds is further amplified due 

to its high incidence angles of operation. This sensitivity of the SeaWinds backscatter 

measurements to the presence of rain can be exploited to provide quantitative rain 

estimates from the measured backscatter signal. 

In this chapter, we develop a simple forward model to characterize the effects of 

rain on SeaWinds measured backscatter signal. With the assumption that the rain effects 

are isotropic, the polarized scatterometer signal is empirically modeled as a function of 

the integrated rain rate and the wind vector. Following this introduction, we present a 

brief description of the training dataset utilized in building our model. In the third section, 

we provide a detailed discussion of the development of the empirical forward model, 

which is specifically tuned to SeaWinds geometry and operating frequency. Validation of 

the model is performed through comparisons with actual backscatter measurement data 

from SeaWinds. Results demonstrate the fact that the simple model can accurately 

reproduce the effects of rain on the measured backscatter signal. This forward model will 

be used later in conjunction with SeaWinds active backscatter measurements to formulate 
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a combined passive / active mathematical inversion algorithm to enhance the passive-

only oceanic rainfall estimates from QRad. 

 

 

Training Dataset 

 

In order to model the effect of rain on the backscatter measurements obtained 

from SeaWinds, we collocate SeaWinds σ0 observations with rain measurements 

produced by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager 

(TMI) and the numerical weather prediction (NWP) wind fields from the National 

Centers for Environmental Prediction (NCEP). The same collocation database, consisting 

of four hundred twenty one near simultaneously observed regions of major rain events, 

used earlier in training the passive QRad algorithm is utilized again to estimate the rain 

induced model parameters. Each collocated region consists of the overlapping swaths of 

the SeaWinds and TMI instruments in which the overpass time difference is restricted to 

be within ± 30 minutes. The importance of such near simultaneous observation is driven 

by the fact that the spatial structure and intensity of a typical rain event can rapidly vary 

with time, thereby, a close collocation time difference is essential in order to capture the 

precipitation conditions affecting the SeaWinds scatterometer σ0 measurements. The 

collocated rain events used in the forward model development activity are chosen from 

different seasons of the year 2000, having geographical locations (previously shown in 
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Figure 17) that span the full latitudinal range of the tropical rainfall region where rain is 

most frequent.  

The SeaWinds σ0 measurements are obtained from QuikSCAT level 2A (L2A) 

data product. Each L2A data product file contains σ0 observations acquired during one 

full orbital satellite revolution (rev), spatially grouped by wind vector cell (WVC) rows. 

Each WVC row stores a scan of σ0 measurements, and corresponds to a single cross-track 

cut of the SeaWinds measurement swath. Due to SeaWinds rotating pencil beam antenna 

design, the number of σ0 measurements which fall within a particular WVC is highly 

dependent on the cell’s cross-track location. Under nominal operating conditions, 

SeaWinds generates 709 pulses over its full swath as the spacecraft travels a distance of 

25 km in the along-track direction, which is the width of a single WVC row. However, to 

accommodate the instrument highest pulse rate, the L2A product allocates space for a 

total of 810 measurement pulses per wind vector cell row. Thus, to cover a single satellite 

revolution, the 25 km resolution L2A product files reports the σ0 measurements in a two 

dimensional array of 1624 WVC rows, and 810 cells per row.  

The NCEP wind fields are used in our model to provide an estimate of the surface 

backscatter under non-raining conditions. These fields, included in the QuikSCAT level 

2B (L2B) product are derived from operational NCEP maps which provide wind 

estimates at 1000 mbar level, having a spatial resolution of 2.5º x 2.5º on a latitude / 

longitude grid,  and a temporal resolution of 6 hours. The NCEP wind speed and 

direction estimates in the L2B data files are interpolated to match the QuikSCAT wind 

vector cell locations. They are utilized as an external nudging source to aid filtering in the 

QuikSCAT wind retrieval processor and produce a unique wind vector field solution. 
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Compared to the L2A data product, the L2B file processing employs a different 

data organization. The L2B processor generates a grid of wind vector cells (WVC) 

aligned in the along-track and the cross-track axes of the QuikSCAT spacecraft 

measurement swath, where each WVC is a square with a dimension of 25 km. Therefore, 

in order to acquire data for one complete satellite orbital revolution, a total of 1624 WVC 

rows (in the along-track direction), with 76 WVCs per row (in the cross-track direction) 

are needed. The differences between L2A / L2B data organization necessitate co-

registering both data sources on a common grid. To achieve this goal, the L2A σ0 

measurements are collocated on the L2B WVC grid. For each WVC, the σ0 

measurements falling within the cell are averaged and assigned to that particular WVC 

location. Both, the L2A and L2B data products are available from NASA Physical 

Oceanography Distributed Active Archive Center (PODAAC) at the Jet Propulsion 

Laboratory (JPL).  

To evaluate the effect of rain on SeaWinds backscatter σ0 measurements, we 

utilize the integrated rain rate estimates obtained from the TMI sensor. As noted 

previously, due to the lack of direct integrated rain rate measurements by TMI, we 

approximate the integrated rain rate values as the product of the TMI surface rain rate 

obtained from the TRMM 2A12 data product, and the freezing rain height from the 

TRMM 3A11 data product. Once an estimate of the integrated rain rate is obtained, it is 

collocated with the SeaWinds σ0 measurements and the NCEP wind fields on a common 

WVC measurement grid structure. 
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Development of SeaWinds σ0 Forward Model 

 

This section presents the development of an empirical model to characterize the 

impact of rain on the backscatter measurements acquired by the SeaWinds instrument. 

The statistical model incorporates the effects of scatterometer signal attenuation and total 

augmentation on the measured backscatter due to the presence of rain.  

 

 

Rain Effects on SeaWinds σ0 Observations 

 

In the presence of rain over the ocean, the SeaWinds scatterometer microwave 

signal may be affected in three ways: the rain drops impinging on the ocean surface alter 

the roughness of the centimeter scale capillary wave field by creating additional surface 

features such as the ring waves which result from the collapse of splash created stalk. 

Such rain induced features alter the wind scattering signature of the ocean surface by 

presenting additional backscattering from rain and suppressing the measured σ0 wind 

directional dependence [47-49].  

In addition to the rain surface perturbation effect on the measured backscatter, the 

volume of rain in the atmosphere has a two-way attenuating effect on the scatterometer 

signal; where the rain column attenuates both the transmitted radar signal, and the wind 

generated echo from the ocean surface. Additionally, the volume of rain scatters the 
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signal incident upon it, which under certain wind / rain combinations can completely 

mask the echo from the ocean surface. 

At the high incidence angle measurement of SeaWinds, the path length which the 

scatterometer microwave signal has to travel increases, thereby, the rain attenuation and 

volume scattering effects are magnified. Likewise, the sensitivity of the backscatter 

signal to the roughness of the ocean surface becomes more pronounced at higher 

incidence angles. Thus, the Ku-band operating frequency and measuring geometry 

affords the SeaWinds instrument a high sensitivity to the presence of rain.  

In literature, it is widely accepted to characterize the aforementioned effects of 

rain on the measured radar signal using the following simple mathematical form [30, 31]: 

 

0 0 0( , , , , ) ( , , ) ( , , , ) ( , , )meas wind excessr u p r p u p r pσ χ θ α θ σ χ θ σ θ= ⋅ +             (6.1) 

 

According to this model, the measured radar backscatter, 0
measσ , is equal to the algebraic 

sum of two scattering terms in the normal space. The first term, 0
windα σ⋅ , represents the 

non-raining wind-generated surface scattering attenuated by α due to signal propagation 

through the rain column. The second term accounts for the additional (excess) scattering 

due to the presence of rain. The excess rain-induced backscatter component includes the 

scattering contributions from the attenuated surface perturbation, 0
surfaceα σ⋅ , and the 

atmospheric rain volume, 0
rain volσ − , and given by: 

 

0 0 0( , , ) ( , , ) ( , , ) ( , , )excess surface rain volr p r p r p r pσ θ α θ σ θ σ θ−= ⋅ +                   (6.2) 
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In the above formulation, r denotes the integrated rain rate, u is the wind speed, χ 

is the relative azimuth direction, p is the polarization of the electromagnetic radiation and 

θ is the viewing angle of incidence of the radar instrument. In deriving this simplified 

model, it is assumed that the rain induced attenuation, ( ), ,r pα θ , and excess 

backscattering, 0 ( , , )ex r pσ θ , terms are isotropic functions of the rain rate, or in other words, 

these rain effects exhibit azimuth independence with respect to the radar antenna look 

direction through the rain volume. On the other hand, both rain attenuation and 

backscattering effects are dependent upon the incidence angle and the electromagnetic 

polarization of the radar signal. Since the SeaWinds scatterometer employs two pencil 

beams to collect backscatter measurements, and each beam corresponds to a particular 

polarization and incidence angle; where the inner beam is horizontally polarized (H-pol) 

at an incidence angle of 46º, and the outer beam is vertically polarized (V-pol) operating 

at 54.1º incidence; it is important to analyze the impact of rain on the polarized σ0 

measurements acquired by the two SeaWinds beams independently.  

 

 

Estimating SeaWinds σ0 Model Parameters 

 

In order to estimate the rain induced attenuation and backscattering terms of the 

simplified model given by Equation (6.1), we utilize the tri-collocated dataset (described 

earlier) of SeaWinds backscatter measurements with NCEP numerical wind fields and the 
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integrated rain rates produced by TMI, with all three data source being co-registered on 

the SeaWinds 25 x 25 km measurement grid of wind vector cells (WVCs).  

Previous studies have analyzed the effects of rain on SeaWinds σ0 measurements 

using data from buoy [50], SSM/I radiometer  [31], and TRMM precipitation radar (PR) 

[30]. For consistency purposes, in this dissertation we analyze the rain impact on 

SeaWinds σ0 measurements utilizing data obtained from the TMI radiometer onboard 

TRMM satellite, which is the same data source used to derive the excess brightness 

temperature / integrated rain rate (Tex – IRR) transfer functions employed in the passive 

QRad rain retrieval algorithm. As noted earlier, the TMI integrated rain rates are 

estimated as the product of the surface rain rate (mm/hr) and the rain path length (km). 

The path length is calculated using the rain freezing height retrieved by TMI and 

multiplied by the secant of the incidence angle of the TMI instrument. Because the 

integrated rain rate measurements from TMI are reported at a higher resolution compared 

to the SeaWinds 25 km x 25 km WVC measurement grid, the TMI measurements whose 

centers are included in a given WVC are averaged and assigned to that particular cell.    

In the model parameter estimation activity, we use the collocated data from 

numerical weather prediction NCEP wind fields to provide estimates of the non raining 

wind induced surface backscatter, 0
windσ . As noted earlier, the NCEP winds are 

interpolated in space and time to match the SeaWinds WVC locations. However, it is 

commonly known that under rain free conditions, the 1000 mbar NCEP wind estimates 

are somewhat biased high compared to the 10 m neutral stability wind measurements 

retrieved by SeaWinds. This bias is attributed to the differences in the measurement scale 

height, and the numerical prediction errors. Therefore, a bias correction is employed to 
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match the NCEP wind estimates to the winds measured by the SeaWinds scatterometer. 

By using regression analysis, and utilizing a large data set of near simultaneously 

collocated rain free SeaWinds / NCEP wind measurements, a first order multiplicative 

constant correction is determined as ( 0.84QuikSCAT NCEPws ws= × ). The new bias corrected 

NCEP wind fields are projected through the QSCAT-1 GMF to produce an estimate of 

the rain free wind generated backscatter:  

 

( ) ( )0 , , , , , ,wind NCEP NCEPu p u pσ χ θ χ θ=M                                    (6.3) 

 

where M  denotes the QuikSCAT GMF table, θ is incidence angle of the SeaWinds 

instrument, p is the polarization of the electromagnetic radiation, NCEPu  is the bias 

corrected NCEP wind speed, and NCEPχ  is the relative azimuth direction defined as the 

difference between the antenna azimuth and the NCEP wind direction: 

 

NCEP Azimuth wind directionχ = −                                             (6.4) 

 

Once the TMI IRR, and the polarized non-raining surface backscatter contribution 

due to wind speed, 0
windσ , are available, the estimation process of the rain induced 

attenuation and excess backscattering terms given by Equation (6.1), and their associated 

model parameters proceeds as follows: 

First, quality control is performed on the WVC grided, tri-collocated training 

dataset. A conservative land mask is employed to exclude land contaminated pixels, 
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further, appropriate flags are applied to identify and remove any WVC pixel 

contaminated with ice or bad measurements from the analysis. Next, the collocated TMI 

integrated rain rate values are used to bin the polarized SeaWinds backscatter 

measurements, 0
measσ , and the corresponding rain free, wind induced surface 

backscattering observations, 0
windσ . As noted previously, because the H-pol and V-pol 

beams of the SeaWinds instrument have different characteristics, the σ0 measurements 

obtained from each beam will be impacted by the presence of rain in a different fashion, 

and therefore, measurements acquired by each beam are analyzed separately in the 

parameter estimation process.   For each particular antenna beam and integrated rain rate 

bin, least squares error analysis is performed using the binned σ0 data to determine the 

best constant values for the multiplicative attenuation, α, and the additive excess 

backscattering, 0
excessσ , terms in Equation (6.1). The estimated quantities are assigned to 

the average TMI integrated rain rate value for the particular bin under consideration. The 

integrated rain bins are 5 km* mm/hr (~ 0.625 mm/hr) wide, and encompass the range of 

0 – 200 km*mm/hr, observed in the training dataset. For the case of zero rain (as 

observed by TMI), an additional rain free bin is included, where it is assumed that the 

corresponding rain excess backscattering is negligible ( 0 0excessσ ≈ ), and there is no 

attenuation due to rain ( 1α ≈ ). The bin averaged data of the rain induced attenuation and 

excess backscatter (for both SeaWinds beams) are shown in Figures 34 and 35, 

respectively.  
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In the next step of the estimation process, parametric forms are chosen for the 

excess backscattering, 0
excessσ , and the attenuation,α , terms as a function of the integrated 

rain rate. The following mathematical forms are used to model α , and 0
excessσ  [31]: 

 

( , )( , , ) exp( ( , ) )pr p k p r αη θ
αα θ θ= − ⋅                                                  (6.5) 

 

( , )0 ( , , ) ( , ) ex p
excess exr p k p rη θσ θ θ= ⋅                                                    (6.6) 

 

In the last step of the model estimation process, a second regression analysis is 

performed to fit the selected parametric forms given by Equations (6.5) and (6.6) to the 

binned data, and determine the optimum values for the different parameters of the 

attenuation model ( kα , αη ), and the excess backscattering model ( exk , exη ). Each one of 

these four parameters takes two values corresponding to a particular SeaWinds beam 

(inner beam: p = H-pol, θ = 46º / outer beam: p = V-pol, θ = 54.1º). The values for the 

different parameters are listed in Table 9, and the resulting attenuation and excess 

backscattering models are shown as solid lines on Figures 34 and 35, respectively. 

 From these two figures, a number of key observations can be made. First, it is 

noted that as the integrated rain rate increases, the excess backscattering increases (shown 

in decibels), and the rain induced attenuation increases as well (shown in absolute 

decibels). Further, it is observed in Figure 34 that the SeaWinds outer (V-pol) beam 

experiences a higher attenuation in the presence of rain as compared to the inner (H-pol) 

beam. This is mainly due to the fact that the measurements acquired by the vertically 
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polarized outer beam travel a longer distance within the rain volume because of the 

beam’s larger angle of incidence. Moreover, as Figure 35 illustrates, compared to their V-

pol counterparts, the SeaWinds H-pol σ0 measurements are more sensitive to rain, as is 

the case for the polarized radiometric excess brightness temperatures. This is due to the 

oblateness of the rain drops, especially at higher rain rates. 

Using the parametric functional forms of the polarized rain induced attenuation, 

and rain excess backscatter, given by Equations (6.5) and (6.6), in conjunction with the 

simplified rain effect model of Equation (6.1), the polarized backscatter σ0
 measurements, 

as seen by the SeaWinds scatterometer, are simulated, and shown in Figure 36, as a 

function of the integrated rain rate and the wind induced surface backscatter. Also shown 

on the figure (solid red) is the locus of the backscatter σ0 points, where the rain induced 

excess backscatter contribution is equal to 50 % of the simulated overall polarized 

backscatter σ0
 measurement. It can be readily seen from the figure that although the 

design of SeaWinds scatterometer was mainly optimized for oceanic wind vector 

observation, the response of SeaWinds twin beams, is rain dominated under a wide range 

of rain / wind combinations which are located in the upper diagonal regions of the 

figures. The sensitivity of SeaWinds instrument to the presence of oceanic rain will be 

utilized in the next chapter to retrieve quantitative estimates of the oceanic rainfall.  
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SeaWinds σ0 Model Validation 

 

In order to validate the simplified SeaWinds rain effect model given by Equation 

(6.1), we compare the model outputs to actual polarized σ0 measurements acquired by 

SeaWinds as function of the integrated rain rate, and the wind generated backscatter 

estimates, 0
windσ , obtained from the bias corrected NCEP wind vectors. Figures 37 – 40 

show the SeaWinds backscatter measurements, 0
measσ , plotted against 0

windσ  for the inner 

H-pol beam, and the outer V-pol beam, respectively. The rain rates listed on the subplots 

corresponds to the average of the rain rate bin used to generate the data. 

In viewing the various scatter plots, it is helpful to recall that in the absence of 

rain, the polarized 0
measσ  and 0

windσ data should be scattered along the perfect agreement 

lines. Also, it should be recalled that the magnitude of 0
windσ (shown in decibels) is 

proportional to the wind speed magnitude (i.e., the larger the 0
windσ magnitude, the higher 

the corresponding wind speed). It can be observed from the figures that the sensitivity of 

the SeaWinds σ0 measurements to the presence of rain is dependent on the magnitude of 

the wind speed. For example, as can be seen from the top left panels in Figures 37 and 

39, the low rain rate values can significantly affect the low σ0 measurements, which 

corresponds to low wind speed observations, however, the impact of low rain on the high 

σ0 measurements that corresponds to high wind speeds is negligible. 

For each subplot in Figures 37 - 40, the predicted σ0
 values obtained using the 

simple rain model are shown in blue / green for the H-pol / V-pol beams, respectively. It 

is readily observed that the simple rain effect model of Equation (6.1) does track the data 
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very well, and therefore, this simple empirical model is capable of reproducing the 

impact of rain on the σ0 measurements collected by SeaWinds.  

 

 

 

Table 9: Coefficients of rain induced attenuation and excess backscattering models for 
SeaWinds scatterometer 
 

Attenuation (α ) Excess Backscattering ( 0
excessσ ) 

 
kα  αη  exk  exη  

H-Pol 0.0893 0.3699 0.0023 0.5916 

V-Pol 0.1337 0.4586 0.0030 0.4256 
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Figure 34: Rain attenuation as observed by SeaWinds H-Pol inner beam (blue), and V-Pol 
outer beam (red).  The symbols denote the binned / averaged data.  The solid lines depict 
the rain attenuation estimated using the parametric form given by Equation (6.5). 
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Figure 35: Excess backscatter due to rain as observed by SeaWinds H-Pol inner beam 
(blue), and V-Pol outer beam (red).  The symbols denote the binned / averaged data. The 
solid lines depict the rain induced excess backscatter estimated using the parametric form 
given by Equation (6.6). 
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Figure 36: Simulation of SeaWinds scatterometer response as a function of rain rate and 
surface wind vector induced backscatter. The upper panel shows the response of the H-Pol 
inner beam, and the lower panel depicts the response of the V-Pol outer beam.  The solid 
red lines indicate the response where excess backscatter due to rain is equal to 50% of the 
total observed backscatter. 
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Figure 37: SeaWinds backscatter measurements acquired by the inner H-Pol beam plotted 
as a function of rain rate and wind induced backscatter. Blue represents the backscatter 
estimate from the simplified model of Equation (6.1). 
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Figure 38: SeaWinds backscatter measurements acquired by the inner H-Pol beam plotted 
as a function of rain rate and wind induced backscatter. Blue represents the backscatter 
estimate from the simplified model of Equation (6.1). 
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Figure 39: SeaWinds backscatter measurements acquired by the outer V-Pol beam plotted 
as a function of rain rate and wind induced backscatter. Green represents the backscatter 
estimate from the simplified model of Equation (6.1). 
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Figure 40: SeaWinds backscatter measurements acquired by the outer V-Pol beam plotted 
as a function of rain rate and wind induced backscatter. Green represents the backscatter 
estimate from the simplified model of Equation (6.1). 



 123

CHAPTER SEVEN: RAINFALL RETRIEVALS USING COMBINED 
PASSIVE AND ACTIVE MEASUREMENTS 

 

 

Introduction 

 

The SeaWinds microwave sensor has the simultaneous capability of measuring 

the polarized active radar backscatter, σ0, as well as the passive radiometric emission, TB, 

from the Earth surface and intervening atmosphere. The linearly polarized, σ0 and TB, 

measurements are collected by SeaWinds at a Ku-band frequency of 13.4 GHz over the 

entire 360º conical scan with separate offset pencil beams at 46° incidence (H-pol), and 

54.1° incidence (V-pol). The individual TB’s are averaged on a spacecraft wind vector 

cell (WVC) measurement grid of 25 km resolution, which results in mean polarized TB’s 

and σ0 measurements being perfectly collocated, spatially and temporally.  

As discussed earlier, both active σ0 and passive TB measurements acquired by 

SeaWinds exhibit a high sensitivity to the presence of rainfall over the ocean surface. So 

far, we have utilized the rain sensitivity of the measured passive radiometric brightness 

temperatures to empirically establish brightness temperature – rain rate (TB-R) transfer 

functions, which were employed in the framework of the passive QRad / SRad retrieval 

algorithms to provide estimates of the oceanic rain. Further, based upon the sensitivity of 

the SeaWinds active scatterometer signal to the presence of rain over the ocean, we 

developed in the previous chapter simple parametric models to quantify the rain induced 
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attenuation and the excess backscatter effects on SeaWinds σ0 measurements as functions 

of the integrated rain rate. 

 In this chapter, we investigate incorporating the additional piece of rain 

information available from the SeaWinds active backscatter measurements to enhance the 

quantitative rain estimates derived from the passive-only QRad (and by implication, 

SRad) rain retrieval algorithm. Following this introduction, the combined passive / active 

algorithm, known as SeaWinds rain retrieval algorithm is discussed in details.  

 

 

SeaWinds Passive / Active Rain Retrieval Algorithm 

 

 The physical basis of the SeaWinds rain retrieval algorithm [51] is the correlation 

between the polarized passive brightness temperature (TB) / active radar backscatter (σ0) 

measurements collected by the SeaWinds sensor, and the rain rates observed by the 

TRMM Microwave Imager (TMI). Due to the relatively long duration of the SeaWinds 

transmitted microwave pulse, the polarized rain induced passive emissions, as well as the 

polarized active backscatter measurements are directly proportional to the path integrated 

rain rate, which is the retrieved geophysical parameter from SeaWinds measurements. 

 The SeaWinds rain algorithm is tuned utilizing the same collocation dataset of 

four hundred twenty one rain events used previously to train the passive QRad algorithm, 

and to characterize the rain induced attenuation and backscattering effects on SeaWinds 

active σ0 measurements.  Figure 41, presents a simplified block diagram of the combined 
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passive / active SeaWinds rain retrieval algorithm. The data inputs to the algorithm are: 

the passive QRad (SRad) rain estimates, the individual polarized σ0 measurements from 

level 2A (L2A) data files, and the collocated bias-adjusted NCEP wind vectors from level 

2B (L2B) data product. 

The various input data are co-registered on a spacecraft wind vector cell (WVC) 

measurement grid of 25 km x 25 km resolution, and used to make a correction for the rain 

attenuated oceanic surface wind vector backscatter contribution to the σ0 measurements, 

and thereby, provide an estimate of the polarized rain induced excess backscatter, 0
exσ , 

upon which the rain retrieval is based. The output of the SeaWinds algorithm is an 

instantaneous rain rate product, by satellite orbit revolution, which is posted on the 25 km 

WVC measurement grid.  The instantaneous rain product can be fed to an averaging 

subroutine to provide a global, Earth gridded rain rate product.  
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Figure 41: A simplified block diagram of the passive / active SeaWinds rain rate algorithm. 
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Rain Retrieval Methodology 

 

The SeaWinds rain algorithm is a statistical inversion algorithm that exploits the 

additional rain sensitivity of SeaWinds active backscatter σ0 measurements to enhance the 

passive-only rainfall estimates from QRad. The algorithm combines the passive QRad 

rain measurements, the active σ0 measurements, along with the empirical rain induced 

excess backscatter and attenuation models to formulate a minimum objective function 

mathematical model that provides an improved quantitative estimate of the oceanic rain. 

The SeaWinds combined passive / active rain algorithm retrieves the oceanic rain 

on a WVC measurement grid of 25 km spatial resolution. In order to get an accurate 

estimate of the oceanic rain from the polarized active backscatter measurements, it is 

necessary to correct for the transient contribution of the oceanic surface wind vector on 

the backscatter measured by SeaWinds. In this regard, we utilize the collocated NCEP 

wind vectors, which are projected through the QSCAT-1 GMF table using Equation 

(6.3), to produce an estimate of the wind generated surface backscatter ( 0
wsσ ). The rain 

contribution to the measured backscatter ( 0
mσ ) signal, defined as the rain excess 

backscatter ( 0
exσ ), can be estimated by re-arranging Equation (6.1): 

 

 0 0 0( , , ) ( , , , , ) ( , , ) ( , , , )ex m wsr p r u p r p u pσ θ σ χ θ α θ σ χ θ= − ⋅        (7.1) 

 

For each measurement pulse within a particular WVC, the attenuated wind 

backscatter contribution, 0( ) wsrα σ⋅ , is estimated using the collocated QRad measurement 
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projected through the SeaWinds attenuation model, given by Equation (6.5). Next, the 

polarized rain rates are calculated from the estimated polarized excess backscatter 

measurements by formulating and minimizing a weighted least squared error objective 

function between the measurements and the excess backscatter model function: 

 

( )2m o d
, ,

1 ( )

m ea s e lN
ex i ex i

i i Q R a d

J
IR R

σ σ

δ=

−
= ∑                                         (7.2) 

 

where, N, is the total number of the polarized measurements (pulses) accumulated in a 

given WVC. The variance, δi, is estimated for each pulse using the QRad rain 

measurment in the corresponding WVC, along with the excess backscatter model of 

Equation (6.6). The final SeaWinds rain product (km*mm/hr) is a weighted average of 

the polarized rain estimates from Equation (7.2): 

 

PA PA
SeaWinds h h v vIRR IRR IRRγ γ= ⋅ + ⋅                                      (7.3) 

 

In the above formula, the PA superscript is used as an indication that the polarized 

rain estimates ( PA
hIRR  and PA

vIRR ) are derived from the combined passive / active 

measurements. The weighting factors, hγ  and vγ , have the values of 0.90 and 0.10, 

respectively. These factors are empirically derived, and optimized using an iterative 

numerical subroutine that minimizes the mean square error (MSE) between the SeaWinds 
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rain estimates (IRRSeaWinds) from Equation (7.3), and the collocated TMI IRR’s over the 

algorithm training dataset. 

 The resulting scatter diagram between SeaWinds and TMI IRR’s for the four 

hundred twenty one collocated rain events is shown in Figure 42. Also, for further 

comparisons, scatter diagrams are generated using the same dataset for different wind 

speed regimes as shown in Figure 43. As these figures illustrate, the SeaWinds retrieved 

rain rates exhibit a somewhat high variability compared to TMI rain, which is mainly 

attributed to the partial antenna beamfilling phenomenon (mostly pronounced at the high 

rain rates), and the inherent coarse radiometric resolution (∆T) in the passive QRad 

measurement. Nevertheless, compared to TMI rain estimates, the retrieved SeaWinds 

IRR’s are well correlated, and well behaved in the mean regardless of the underlying 

wind speed regime. This can be visually seen from the data points being reasonably 

scattered along the perfect agreement lines. Also, this can be verified by examining the 

statistics of the differences between overall data (SeaWinds – TMI) for various IRR bins, 

as presented in Table 10. 

 Next, we compare the performance of the rain retrievals derived from the 

combined passive / active SeaWinds algorithm to those obtained from the passive-only 

QRad algorithm. In performing the comparisons, it is necessary to recall that the passive 

brightness temperature measurements acquired by QRad are mainly rain dominated under 

most wind / rain conditions (previously simulated and shown in Figure 20). However, 

depending on the observed wind / rain combination, the active backscatter return 

collected by the SeaWinds twin beams (previously simulated and shown in Figure 36) 

can be either rain or wind dominated. Therefore, to identify the regime to which a given 
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SeaWinds-based WVC-rain estimate belongs, we calculate the average ratio of the rain 

induced excess backscatter to the total model backscatter estimate, given the NCEP wind 

vector and the QRad rain measurement in that particular WVC. The average rain excess 

backscatter ratio, exη , is used as an indicator to identify the level to which a given WVC 

is rain dominated, and expressed as: 

 

,
0

0
,1

( , , )
( , , , , )

ex i
N

ex
meas ii

r p
r u p

σ θ
η

σ χ θ=
=∑                                               (7.4) 

 

The rain retrieval comparisons are conducted by examining the correlation 

coefficient of the SeaWinds / QRad retrievals against TMI rain rates, as a function of an 

“ exη - based” threshold applied to the rain data. Figure 44 demonstrates that when no exη  

threshold is applied to the data, the calculated correlation coefficients of SeaWinds and 

QRad retrievals against TMI rain are somewhat comparable (~ 80%). However, as the 

applied threshold is increased, meaning that the rain data used in the comparison is 

increasingly dominated by rain, the combined passive / active SeaWinds rain retrievals 

affords an improved performance over the passive-only, QRad, rain measurements. Also, 

comparisons of the root mean square (RMS) error of SeaWinds / QRad retrievals (against 

TMI rain), show that an improvement of about 1.5 km*mm/hr (~ 20%) is achieved using 

the combined passive / active retrievals.  

In the next section, we expand the validation activity of the combined SeaWinds 

retrievals through additional comparisons with standard TMI 2A12 rain product.  
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Figure 42: Instantaneous integrated rain rate comparisons for four hundred twenty one 
collocated rain events for SeaWinds and TMI. Spatial resolution is 0.25° (25 km). 
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Figure 43: Instantaneous integrated rain rate comparisons for four hundred twenty one 
collocated rain events for SeaWinds and TMI over different wind speed regimes. Spatial 
resolution is 0.25° (25 km). For each regime, the average wind speed is shown on top.  
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Table 10: Instantaneous integrated rain rate (km*mm/hr) differences for six TMI ranges. 
For each range, the difference (SeaWinds minus TMI) is calculated. 
 

TMI Range Number of points Difference mean 
Difference  

std 

Difference 

rms/<TMI> 

0 – 4 112190 0.5622 2.6253 2.3789 

4 – 8 28366 -0.4544 5.8533 1.0173 

8 – 12 15798 -0.6628 8.4558 0.8608 

12 – 24  24081 0.3938 13.8950 0.8169 

24 – 32 7220 0.7318 20.7341 0.7514 

> 32 11522 -1.0145 27.7985 0.5467 
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Figure 44: Improvement in correlation coefficients (SeaWinds minus QRad) vs. TMI as a 
function of rain excess backscatter ratio, exη . 
 



 135

Validation of SeaWinds Rain Retrievals 

 

In order to further assess the performance of the combined passive / active 

SeaWinds oceanic rain retrieval algorithm, we perform quantitative near simultaneous 

comparisons with standard TRMM 2A12 rain product derived from the TMI sensor, 

which has a well established rain measurement accuracy [44].  The validation activity is 

based upon seventy two collocated rain events, near simultaneously observed by 

SeaWinds and TMI. This collocation dataset is independent from the one used in tuning 

the SeaWinds rain algorithm, and it spans a period of about seven months from April ~ 

October of the year 2003. To ensure temporal collocation, the worst case coincidence 

time difference for observing a particular rain event is restricted to be less than 30 

minutes. Figure 45 depicts the geographic locations of the collocated rain events. 

In order to compare SeaWinds and TMI rain rates, it is necessary to take into 

account the scales on which both sensors report their corresponding rain measurements. 

While SeaWinds report a single rain estimate for each 25 x 25 km WVC, the TMI sensor 

reports rain at a higher (finer) spatial resolution. Therefore, to create rain values with 

compatible spatial resolution to SeaWinds derived rain rates, the TMI rain measurements 

located inside a given WVC are spatially averaged and assigned to that particular WVC. 

A scatter plot of TMI rain rates against the SeaWinds derived rain rates, for the 

seventy two collocated validation rain events, is shown in Figure 46. A comparison of the 

corresponding rain data probability density functions (pdf’s) is presented in Figure 47. 

Although a slight distortion is observed at the low rain values, it can be readily seen that 
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the general shape of the pdf curves does match very well. The statistics of the rain error 

(SeaWinds – TMI), associated with the retrievals for three different wind speed regimes, 

are calculated and displayed graphically in Figure 48. As the figure illustrates, the rain 

error statistics of SeaWinds retrievals are almost unbiased, with close-to-zero mean 

values, regardless of the surface wind speed. These results demonstrate that the 

magnitude of the rain rates derived from SeaWinds correlate very well with TMI rain, 

further, the results verify that the wind correction procedure employed in the rain 

retrieval algorithm is well behaved in the mean. 

 

 

Figure 45: Locations of simultaneous collocated rain events for seventy two SeaWinds / 
TMI independent validation dataset. Collocation time difference is restricted to ±30 
minutes. 
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Figure 46: Instantaneous integrated rain rate comparisons for seventy two collocated rain 
events for SeaWinds and TMI. Spatial resolution is 0.25° (25 km). 
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Figure 47: Rain rate probability density function for seventy two collocated validation rain 
events for SeaWinds and TMI. 
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Figure 48: Rain rate error statistics (SeaWinds - TMI) as a function of rain rate for 
different wind speed regimes.  
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Next, we examine a typical near-instantaneously collocated SeaWinds / TMI rain 

event example, as shown in Figure 49. The rain event was observed on April 19 2003, 

within 15 minutes of the TRMM overpass. The top panel shows the TMI integrated rain 

rate, and the corresponding SeaWinds rain estimate is given in the lower panel. The pixel 

resolution is 25 km on a WVC measurement grid. Color scales are identical for both 

images and proportional to the integrated rain rates in [km*mm/hr]. To reduce the 

possible occurrence of spurious rainy pixels resulting from the noisy SeaWinds 

measurements, a threshold of 2 km*mm/hr is applied on both integrated rain values 

(equivalent to ~0.25 mm/hr). By comparing both rain retrievals given in Figure 49, it is 

evident that the shape and the relative intensity of the rain event are well captured by 

SeaWinds. For this particular event, the correlation coefficient is found to be 88%. The 

average correlation between TMI and SeaWinds rain estimates over the validation data 

set is 82%.  

By applying the rain threshold on the retrieved rain rates, SeaWinds rain estimates 

can be utilized as a rain flag. An example is shown in the Figure 50. In order to quantify 

the performance of SeaWinds measurements as a stand alone flag for identifying the rain 

contaminated WVCs, we produce binary maps that are quantized into four levels to 

classify the rain pattern for the different collocated rain events. Using the TMI binary rain 

image as the surface truth, we classify the binary rain image pixels into three categories: 

the first is agreement percentage, which is the percentage of pixels that are 

simultaneously identified by both sensors (SeaWinds and TMI) as raining pixels or non 

raining pixels. The second category is the false alarm percentage, which is the percentage 

of pixels classified as raining pixels by SeaWinds, while identified as non raining pixels 
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by TMI. The third category defined as miss-rain percentage is the percentage of pixels 

classified as raining pixels by TMI, while the SeaWinds sensor identified those pixels as 

rain free.  

The spatial rain pattern classification for the event under consideration is shown 

in the upper panel of Figure 50. Also, for comparision purposes, the lower panel of the 

figure presents the binary pattern classification calculated for the TMI vs. the JPL rain 

flag which is computed by the Impact based multidimensional histogram (IMUDH) 

algorithm [52]. This algorithm estimates the probability that a WVC is contaminated by 

rain based on various rain-dependent parameters. To ensure consistancy in our 

comparisions, we apply a small threshold value on IMUDH which results in flagging the 

same percentage of WVCs as the 2 km*mm/hr thresholded TMI. The different 

percentages of the rain pattern classification for the two cases are calculated and given in 

Table 11.  We note that SeaWinds rain flag provides improved metrics compared to 

IMUDH based rain flag.  

The evaluation of the SeaWinds rain flagging performance is extended by 

calculating the different SeaWinds-based rain pattern classification percentages 

(agreement, false alarm and miss-rain) against the TMI derived rain flag, for the seventy 

two collocated validation rain events, as a function of various surface wind speed 

regimes. The results, given in Table 12, demonstrate that SeaWinds rain flagging 

capability is nearly invariant regardless of the wind speed regime, with an average overall 

rain detection capability of about 90%.  

Finally, we evaluate the rain detection capability of SeaWinds as a function of 

rain rate. Figure 51 illustrates that the SeaWinds rain retrieval algorithm can identify 
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more than 50 % of the WVCs with low rain rate values. However, as the observed rain 

rate increases and approcahes the vicinity of 2 mm/hr, the SeaWinds algorithm is capable 

of detecting more than 90% of the rain contaminated WVCs. This emphsize the powerful 

rain detection capability of SeaWinds rain algorithm, and the utility of SeaWinds based 

rain measurements as a stand-alone rain flag. 
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Figure 49: A typical example of rain event measured by TMI 2A12 product (top panel) and 
SeaWinds (lower panel). Spatial resolution is 25 km (WVC grid). Coincidence time 
difference  ~ 15 minutes. 
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Figure 50: Pattern classification (WVC grid) between TMI vs. SeaWinds (top panel) and 
TMI vs. IMUDH (lower panel). Classification categories include: agreement (color indices 0 
& 2), false alarm (color index 1) and miss rain (color index -1).
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Table 11: Binary pattern classification results for rain event shown in Figure 50. 
 

Comparison Agreement % False alarm % Miss-rain  % 

SeaWinds / TMI 89.03 5.07 5.90 

IMUDH / TMI 88.16 6.09 5.75 

 

 

 

 

Figure 51: SeaWinds rain detection capability as a function of rain rate. 
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Table 12: SeaWinds rain pattern classification for various wind speed regimes. 
 
Wind Speed Regime 

(m/s) 
Agreement % Missed Rain % False Alarm % 

0 3sw≤ <  91.23 2.42 6.35 

3 7sw≤ <  90.43 3.44 6.13 

7 12sw≤ <  89.58 4.20 6.22 

12sw ≥  85.67 8.33 6.00 

All Data 89.78 4.05 6.17 
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Rain Retrieval Errors 

 

There are several sources of error in the retrieved SeaWinds / QRad rain rates, 

which are the result of:  

1. The random component of the passive QRad brightness temperature measurement 

error.  Because of this larger than normal ∆T, the excess brightness temperature includes 

a large random, zero-mean, Gaussian noise component that distorts the retrieved rain rate, 

which is most obvious at low rain rates values. However, by averaging multiple pulses 

and employing spatial domain filtering techniques, the majority of this noise is canceled, 

and the effective radiometric sensitivity of the instrument is substantially improved, 

which results in a reasonable estimate of the true rain rate.   

2. Convective and stratiform rain type differences.  For the same rain rate, different 

rain types can produce differences in brightness temperatures / backscatter 

measurements, which are neglected in the Tex-R / σ0
ex-R relationships. To compensate for 

this effect, the SeaWinds / TMI training data set was selected over a wide range of 

geographic locations and seasons to produce an average relationship based upon the 

convective / stratiform conditions encountered.  

3. Beam-fill differences between SeaWinds and TMI due to antenna spatial 

resolution.  The SeaWinds scatterometer antenna was designed to optimize the antenna 

boresight gain at the expense of the antenna main beam efficiency. As a result, the 

antenna collects energy over an effective surface area that is approximately twice that of 

the TMI. To produce the Tex-R / σ0
ex-R relationships, the TMI rain rates were averaged to 
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match the SeaWinds measurement resolution; but the empirical beam filling corrections 

applied to TMI do not scale linearly. This will result in an increased variability of 

SeaWinds / QRad rain rates compared to the TMI measurements. 

4. Long term systematic radiometric calibration drift.  The QRad calibration stability 

illustrated in Figure 12 shows an rms variation of 1.4 K.  This effect contributes to 

uncertainty in the empirically derived coefficients used in the retrieval algorithm and to 

biases in the average retrieved rain rates. Nevertheless, this error source is considered 

secondary to the error introduced by the large QRad ∆T. 

5. Bias in NCEP / QuikSCAT wind speed data due to differing reference heights. 

Because in the presence of rain (and at low to moderate ocean wind speeds), wind 

retrievals from SeaWinds are bogus (typically 10 – 15 m/s independent of the true wind 

speed), we utilize wind data from numerical weather prediction NCEP to correct for the 

wind induced contribution to the passive and active measurements acquired by 

SeaWinds. However, it is known that the 1000 mbar NCEP winds are biased high 

compared to the 10 m neutral stability winds measured by SeaWinds. To compensate for 

this difference, a bias correction is applied to adjust the NCEP wind data to match 

SeaWinds derived winds under rain free conditions before use in the rain algorithm. This 

error source is not considered to be a significant source of rain retrieval error. 

6. Inter-annual variability in the ocean (and atmosphere) background from 

climatology.  Because of the low sensitivity of the 13.4 GHz brightness to the 

atmospheric and oceanic physical variables, this error source is not believed to be 

dominant. For example, qualitative comparisons with rain patterns from TMI (presented 

in chapter 5) do not show significant differences in the global rain images. This is 
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supported by good comparisons between the ocean background and the three-day 

brightness temperatures used in the QRad external TB calibration.  

7. Error in estimating the integrated rain rate. Because the TMI integrated rain rate 

value is not available, the IRR is approximated to be the product of the TMI surface rain 

rate (mm/hr) and the rain path length (km). Since both the surface rain rate from the TMI 

2A12 product and the rain height from the TMI 3A11 product have random errors, this 

introduces increased error in the TB-R / σ0-R empirical relationships. However, the excess 

brightness temperature and the excess backscatter depend upon the integrated rain rate 

along the propagation path; and because the height of rain varies significantly over 

latitude, we believe that using this IRR is the best compromise. Further, the TMI training 

set is distributed over the full latitude range of TRMM, which provides an averaging 

effect. However, since the SeaWinds / QRad rain algorithms are also applied beyond the 

latitudinal range of TRMM, caution is advised because of the unknown accuracy in these 

regions. 
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CHAPTER EIGHT: SUMMARY AND CONCLUSIONS 
 

 

The Ku-band satellite microwave remote sensor, SeaWinds, has the simultaneous 

capability to collect the active radar backscatter (σ0), and the passive radiometric 

brightness temperature (TB) measurements from the Earth’s surface and intervening 

atmosphere. Although the instrument design was originally optimized solely to measure 

the speed and direction of the near surface oceanic wind vector, the polarized 

measurements acquired by SeaWinds are also highly sensitive to the presence of rainfall 

over the ocean. This dissertation expands the utility of the SeaWinds instrument by 

exploiting the rain sensitivity of the passive / active measurements to provide quantitative 

estimates of the global oceanic rainfall. The following discussion further illustrates the 

contributions made by this dissertation. 

First, by building a large database of near-simultaneously tri-collocated 

measurements from SeaWinds, numerical weather prediction NCEP winds, and rain rate 

estimates produced by TMI microwave radiometer, we analyze the effect of oceanic rain 

on the polarized passive TB measurements acquired by SeaWinds Radiomter (QRad). As 

presented in chapter 4, a simple brightness temperature model is developed to provide an 

estimate of the rain-induced TB contribution (known as excess brightness, Tex) to the total 

radiometric measured TB, by correcting for the brightness contribution from surface wind 

speed, as well as, brightness contributions due to ocean surface (atmospheric) 

geophysical parameters. Because of the transient nature of the ocean surface wind, its 

brightness contribution is calculated instantaneously (for each satellite revolution) using 



 151

numerical NCEP wind fields along with an empirically derived first order brightness 

correction model. However, the relatively benign radiance, of the remaining ocean 

(atmosphere) geophysical parameters, justifies the estimation of their brightness 

contribution correction utilizing priori climatology information.  

Using the estimated rain-induced Tex brightness temperatures from QRad along 

with collocated TMI rain measurements, we empirically derive polarized (Tex – R) 

transfer functions which are used in the framework of the statistical QRad rain inversion 

algorithm to infer the instantaneous oceanic rainfall. Validation studies, presented in 

chapter 5, demonstrate the fact that the passive-only QRad rain retrievals compare 

reasonably well with collocated rain observations obtained from independent microwave 

rain measuring instruments. Moreover, the validation studies do also illustrate the 

superior performance of microwave-based QRad measurements compared to rain rates 

derived from visible / infrared sources. 

 Second, by utilizing the same collocation database of SeaWinds / NCEP / TMI 

near-simultaneous measurements, in chapter 6, we characterize the effects of oceanic rain 

on the polarized active backscatter (σ0) measurements collected by SeaWinds 

scatterometer. With the assumption that the rain effects on measured backscatter are 

isotropic, a simple first order model for the SeaWinds polarized backscatter signal is 

developed as a function of the polarized wind induced surface backscatter, and the 

integrated rain rate. The simple empirical model incorporates the effects of the 

scatterometer two-way signal attenuation, and the additional excess backscatter (
0
exσ ) due 

to the presence of oceanic rain.  The empirical model is validated using actual polarized 

backscatter measurements from SeaWinds. Results demonstrate the capability of the 
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model to accurately reproduce the effects of rain on the polarized active backscatter 

measurements collected by SeaWinds twin beams. 

 Third, by further exploiting the sensitivity of SeaWinds active backscatter σ0 

measurements to the presence of rain, we develop a combined passive / active 

mathematical rain retrieval algorithm for SeaWinds. The SeaWinds rain algorithm, 

presented in chapter 7, utilizes the passive-only QRad rain measurements, the active σ0 

measurements, the NCEP wind fields, in conjunction with the empirically derived rain-

induced excess backscatter, and attenuation models to refine the passive-only rain 

estimation performance. An objective function mathematical model is formulated and 

minimized to provide global quantitative estimates of the oceanic rainfall. 

 At the Ku-band (13.4 GHz) operating frequency of SeaWinds sensor, the 

contributions of the observed rain / wind combinations to both: the passive radiometric 

TB and active backscatter σ0 measurements acquired by the instrument polarized twin 

beams, are generally non-orthogonal. While the passive TB measurements are mainly rain 

dominated under most rain / wind conditions; the collected active backscatter σ0
 is highly 

dependent on the wind / rain combination, and can be either wind or rain dominant. 

 Compared to the passive-only QRad rain retrievals, combining the passive and 

active measurements acquired by SeaWinds in the rain estimation process affords an 

improved performance, especially over rain dominated regions. The improvement is 

manifested as an increase in the correlation coefficient, and a decrease in the rms error 

against the “surface truth” rain rates derived from TMI. However, the improvement in 

performance is achieved at the expense of a higher computational cost. 
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 By applying a threshold on the retrieved SeaWinds / QRad rain rates, the rain 

information can be converted to a “stand-alone” rain-flag to identify erroneous rain-

contaminated oceanic wind vector retrievals. The performance of SeaWinds rain-flag 

algorithm is validated through comparisons with JPL IMUDH and TMI-based rain flags. 

Results demonstrate the robustness and the excellent detection capability of the 

SeaWinds-based rain-flag, regardless of the underlying wind speed regime. 

 The major scientific utility of SeaWinds / QRad rain measurements is that they 

provide additional independent temporal and spatial sampling of the oceanic rain, which 

complements the coverage provided by TMI and the SSMIs’ instruments. Thus, the 

SeaWinds / QRad rain time series from 1999 to present is a valuable addition to the 

oceanic precipitation climatology dataset that can be potentially used to improve the 

diurnal estimation of the global rainfall, which is a goal for NASA's next generation, 

satellite-based, Global Precipitation Measurement (GPM) mission program. Moreover, 

the early availability of SeaWinds-based rain data will afford users early access to learn 

to use less-precise rain measurements that will occur in the future with the use of less-

capable constellation satellites. The rainfall retrieval algorithm has been implemented by 

NASA Jet Propulsion Laboratory (JPL) as part of level 2B (L2B) science data product, 

which can be obtained from the Physical Oceanography Distributed Data Archive 

(PO.DAAC), Pasadena, CA. 
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