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 ABSTRACT 

This research concerns the CONAE Microwave Radiometer (MWR), on board the 

Aquarius/SAC-D platform. MWR’s main purpose is to provide measurements that are simultaneous 

and spatially collocated with those of NASA’s Aquarius radiometer/scatterometer. For this reason, 

knowledge of the MWR antenna beam footprint geolocation is crucial to mission success. 

In particular, this thesis addresses an on-orbit validation of the MWR antenna beam pointing, 

using calculated MWR instantaneous field of view (IFOV) centers, provided in the CONAE L-1B science 

data product. This procedure compares L-1B MWR IFOV centers at land/water crossings against high-

resolution coastline maps. MWR IFOV locations versus time are computed from knowledge of the 

satellite’s instantaneous location relative to an earth-centric coordinate system (provided by on-board 

GPS receivers), and a priori measurements of antenna gain patterns and mounting geometry. 

Previous conical scanning microwave radiometer missions (e.g., SSM/I) have utilized 

observation of rapid change in brightness temperatures (TB) to estimate the location of land/water 

boundaries, and subsequently to determine the antenna beam-pointing accuracy. In this thesis, results 

of an algorithm to quantify the geolocation error of MWR beam center are presented, based upon two-

dimensional convolution between each beam’s gain pattern and land-water transition. The analysis 

procedures have been applied to on-orbit datasets that represent land-water boundaries bearing 

specific desirable criteria, which are also detailed herein. The goal of this research is to gain a better 

understanding of satellite radiometer beam-pointing error and thereby to improve the geolocation 

accuracy for MWR science data products. 
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: INTRODUCTION 

 

Aquarius/SAC-D is a collaborative earth science mission between the National 

Aeronautics and Space Administration (NASA), and the Argentine Space Agency CONAE 

(Comisión Nacional de Actividades Espaciales). The aim of the mission overall is to provide 

global ocean maps of Sea Surface Salinity (SSS) with high spatial resolution (150km). 

Comprehensive descriptions of the mission science objectives, the Aquarius/SAC-D system 

design, and the implementation of the remote sensing of SSS are found in [1], [2], and [3]. 

For this mission, there are two key sensors associated with the SSS measurement. The 

prime salinity measurement instrument is the Aquarius (AQ) instrument (provided by 

NASA), which is a combined radiometer/scatterometer operated at L-band (1.41 GHz). The 

second instrument, the CONAE Microwave Radiometer (MWR), which operates at K-band 

(23.8 GHz) and Ka-band (36.5 GHz), provides simultaneous and spatially collocated ancillary 

environmental measurements; such as, columnar water vapor, ocean surface wind speed, 

and sea ice concentration. 

The AQ/SAC-D mission’s polar, sun-synchronous, low earth orbit was designed to 

satisfy the science requirements of global ocean sampling. Further, the selection of a 

terminator orbit (sun-rise ascending node) and the satellite bus/AQ instrument geometry 

are largely driven by the remote sensing geometry constraints. These require that the AQ 

instrument antenna beams are consistently pointed away from the sun, to minimize direct 

interception of solar radiation. Finally, the AQ/SAC-D orbit with a 380 km AQ measurement 
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swath results in 100% sampling of the earth surface, with a repeating ground track, every 

103 orbits (approximately one-week). 

 

1.1: Past Work and Current Problem 

1.1.1:   Geolocation Errors for the Special Sensor Microwave/Imager 

 

In 1987, the first SSM/I instrument was launched as part of the Defense 

Meteorological Satellite Program (DMSP) Block 50-2 F8 spacecraft. The instrument’s 

primary purposes were to provide a variety of near-real time global maps: those of cloud 

water; rain rates; water vapor over ocean; marine wind speed, sea ice location, age, and 

concentration; snow water content; and land surface type, moisture, and temperatures [4]. 

Its highest-resolution channel was required to maintain a geolocation accuracy of roughly 

7km; however, geolocation errors in excess of 20-30km were routinely observed. To mitigate 

this, several steps were implemented. 

First, the satellite’s ephemeris model was corrected to more precisely locate the 

instrument itself, a crucial step in geolocation. This is shown in the center panel of Figure 1. 

Next, the geolocation algorithm was altered to improve errors, which resulted from some 

numeric approximations. A fixed set of attitude adjustments were able to reduce geolocation 

error significantly; these yaw, pitch, and roll corrections could not be conclusively attributed 

to any one source (i.e. misalignment of antenna boresight, or actual satellite yaw, pitch, and 

roll attitude biases correction), but it was found that algorithmically, corrections could be 

made to bring errors to within an acceptable range as shown in the right panel of Figure 1. 
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Figure 1: Raw geolocation results for SSM/I (left panel), results with ephemeris correction (middle panel), 
and results with both ephemeris and boresight correction (right panel). 

 

 

1.1.2: Geolocation Errors for the WindSat 

 

The WindSat polarimetric radiometer is the primary payload on the Coriolis satellite, 

which is the US Navy’s “proof of concept mission” to demonstrate the passive microwave 

measurement the ocean surface wind vector from space [5]. The sensor was launched in 

2003 and is still fully operational. 

To validate the WindSat beam-pointing accuracy, brightness temperature (TB) 

images of the Earth were used to establish the sensor derived location of land/water 

boundaries that were compared to high resolution map coordinates. To select the best 

antenna footprint location for this boundary, a technique was developed to determine the 

maximum rate of change of TB data as the transition between regions of low brightness 
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temperature and high brightness temperature – ocean and land, respectively – these 

transition regions can be observed to indicate the most likely regions of coast. 

Figure 2 (from Purdy et al. [5]) illustrates the use of this gradient technique, where 

the right-hand panel shows results before adjustment and the left-hand panel shows results 

after adjustment. With this technique the WindSat pointing errors have been reduced to be 

within error budget specifications of 0.05°, and the corresponding geolocation accuracy is 

below the required 5 km. 

 
Figure 2: WindSat along-scan local maxima (green) and cross-scan local maxima (red), before 
correction (right) and after correction (left) from [5]. 

 

1.1.3:  Geolocation Errors for the Special Sensor Microwave Imager/Sounder 

 

As the next generation of the passive microwave imager on the DMSP, the first Special 

Sensor Microwave Imager/Sounder was launched in 2003, aboard the DMSP F-16 spacecraft 

[6]. This instrument featured 24 channels ranging from as 19 GHz to 183 GHz, with individual 

frequencies chosen to image specific parts of Earth’s atmosphere and surface. Like SSM/I, 

SSMIS routinely exhibited 20-30 km of geolocation error at launch, and required calibration 
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to achieve the required geolocation accuracy, which is as small as 7 km for the surface-

imaging beams. 

As SSMIS is a conically-scanning microwave radiometer, it produces imagery from a 

portion of its circular scan swath as it passes over a region, as depicted in Figure 3. Clearly, 

errors in yaw calculation, beam central angle pointing, or start-time of scan (among other 

parameters) could cause erroneous geolocation. 

 
Figure 3: Scan geometry for SSMIS [7]. 

 

The technique adopted to combat these errors was an evolution of the technique used 

in the calibration of SSM/I and that of WindSat; specifically, partial derivatives of TB in the 

“along scan” direction as well as the “along track” direction were taken to give a time series 

estimate of the points at which the instrument’s field of observation crossed coast lines. In 

this context, “along scan” is the momentary direction of travel of the Instantaneous Field of 

View (IFOV) – a tangent line along the rotation – and “along track” is the direction of the 

satellite’s forward travel. 
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After these partial derivatives were taken, the resulting ΔTBs were thresholded to 

determine areas of interest; regions with ΔTBs below a prescribed threshold were removed 

from consideration, and the areas of interest were then fit with a cubic spline. This spline 

was used to calculate the location of the time series maximum, and in turn to project it to 

latitude and longitude on the Earth’s surface. An example of this result is shown in Figure 4 

(from Poe et al. [6]), where the red points indicate locations of computed maxima, before 

and after correction. 

 
Figure 4: Time series derivative maxima before (left panel) and after (right panel) geolocation correction 
from Poe et al. [6]. 

 

After extensive study, it was determined that in the case of SSMIS, errors causing 

improper geolocation could be corrected by offsetting geolocation calculations with simple 

additive constants; the additions were applied to the cone angle of the feed-horns, the yaw 

of the spacecraft, and the scan start- and stop-times. Though the original sources of the 

errors were not definitively determined, the corrective constants mitigated errors to a range 

around 4-5 km. A sample result from the coasts of Portugal and Spain is shown in Figure 5, 

below. Examination of the black coastlines compared with the image of brightness 
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temperatures shows an obvious error in the left panel, and a significantly better agreement 

in the right panel. 

 
Figure 5: SSMIS Geolocation before (left panel) and after (right panel) geolocation correction [6]. 

 

 

1.1.4:  Engineering Evaluation of MWR Multi-beam Satellite Antenna Boresight 

Pointing Using Land/Water Crossings 

 

Prior to this current thesis, Catherine May [8] performed the initial evaluation of the 

MWR beam-pointing on AQ/SAC-D satellite. In her thesis, she used the maximum slope of TB 

at land/water crossings and determine mispointing of MWR beams. 

The first step of her analysis was to demonstrate a theoretical proof of concept: 

specifically, that a 1-Dimensional Gaussian antenna gain pattern, when convolved with an 

ideal “step function” brightness temperature at the coastline, would exhibit a maximum 

slope on the coastline, where the beam is filled exactly 50% by the ideal temperatures 
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representing land, and 50% by those representing water. A graphical 1-D illustration from 

her thesis [8] is shown in Figure 6.  

 

Figure 6: Convolution of a theoretical “knife-edge” land/water boundary 
with an ideal 1-Dimensional Gaussian antenna pattern from [8]. 

 

Following this, May [8] also evaluated several time series of data to find moments at 

which there were brightness temperature slopes of high magnitude, and investigated the 

corresponding locations to evaluate the similarity of the locations to ideal land/water 

crossings. Upon selecting a small number of these sites, she performed a fit procedure on 

orbits, which crossed over those locations, within a selected 14-week time period. An 

example of the slope plots for a 37GHz channel is shown in Figure 7. 

Once these slopes were found, each was fit with a parabola; the vertex of each 

parabola was used to calculate a land/water crossing projection, in a manner similar to [6], 

though parabolic, rather than a cubic spline. Once each projection was geolocated, the along-

km 
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track distance from each parabola vertex to its nearest coast was calculated, resulting a 

distribution of points similar to that shown in Figure 8. 

 
Figure 7: Initial slope plots for a single beam, vertical 
(left) and horizontal (right) polarizations from [8] 

 

 
Figure 8: Maximum slope projections for a single site, 
corresponding to the slopes in Figure 7 from [8]. 
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1.1.5:  Present Contribution and Research Objectives 

 

The purpose of this thesis is to provide research that supports the post-launch 

AQ/SAC-D Calibration/Validation (CAL/VAL) activity, providing quantitative estimates of 

the antenna boresight pointing accuracy for the two MWR multi-beam antennas (24 

individual beam geolocations). 

To provide this quantitative assessment, an algorithm has been developed to quantify 

geolocation errors. The algorithm does so by comparing MWR observed land/water 

boundaries with a high-precision coastline land map. MWR observed boundaries are 

determined by the point of maximum brightness temperature slope, during the transition 

from a radiometrically cold scene to the radiometrically hot scene (and vice versa). As shown 

above, this method has been used in the past for WindSat and SSMI, and has been proven to 

be quite successful [4, 5]. 

WindSat, SSM/I, and SSMIS share the advantage of data density; because they each 

scan across-track at short intervals, construction of full images for an entire orbital cycle are 

possible, whereas they are not for any single MWR beam, and combining data from multiple 

beams would prevent identification of any single beam’s biases. This makes attempts at the 

imaging of MWR brightness temperatures difficult, and direct use of the imaging technique 

impossible. An image of one week’s worth of data in the vicinity of Florida illustrates this 

problem, shown in Figure 9. Because of this, Catherine May’s modified approach was 

implemented, and a one-dimensional simulation was created to show that the numerical 

convolution of a Gaussian pattern resulted in a maximum slope when the beam was 50% 

filled. 
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Figure 9: One week of 23.8 GHz MWR data over Florida, from beam 1. 

 

As a further validation, the present work includes the two-dimensional convolution 

of an ideal Gaussian beam pattern with a simulated coastline. In this technique, incremental 

beam efficiency is numerically convolved with a two-dimensional brightness temperature 

map of a realistic coastal transition, to generate individual apparent brightness 

temperatures. The maximum-slope technique - which is the nucleus of the current work - is 

applied to these resulting temperatures to validate its efficacy in predicting coastal 

transitions. 

Finally, the deliverable to CONAE will be a set of statistical results, which summarize 

the errors present in each MWR beam and polarization. To produce these results, the full 

three-year data record for each beam and polarization has been processed, which allow 

descriptive statistics to be produced. These results are intended to allow CONAE to take 

corrective action in future data processing to improve accuracy. 

The organization of this thesis is as follows: the description of the MWR system and 

measurement geometry are presented in CHAPTER 2. In CHAPTER 3, the procedure for the 
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assessment of the observed antenna beam pointing (geolocation on the surface of the earth) 

is described. Simulations are presented that demonstrate the validity of using the rapid 

increase of the measured brightness temperature (TB) at land/water transitions, to 

determine the beam geolocation (latitude/longitude). In CHAPTER 4, results are given for 

MWR antenna boresight pointing errors at selected land/water boundaries, which are 

analyzed separately by MWR channel (frequency/polarization combinations) and by 

individual beams. Finally, the summary and recommendations are presented in CHAPTER 5. 
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CHAPTER 2: AQUARIUS/SAC-D MISSION 

The Aquarius/SAC-D mission was developed as a partnership between the United 

States (NASA) and Argentina (CONAE). The principal NASA contributions are the Aquarius 

salinity instrument, the Aquarius salinity data processing system, and the launch into orbit 

[1]. For its part, CONAE provided the satellite platform (SAC-D, shown in Figure 10), 

telecommunications control & command, science data acquisition and several instruments; 

one of these instruments is the Microwave Radiometer (MWR), which is the primary subject 

herein. 

 
Figure 10: Satellite SAC-D overview. 
 

 

The AQ/SAC-D satellite is positioned in a 98° sun-synchronous polar orbit at 657 km 

of altitude which crosses the equator northward (ascending) at 6 p.m., with the primary 

sensors (AQ and MWR) always facing away from the sun. The platform operates in a precise 
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seven-day repeating orbit to ensure parity between consecutive measurements of the same 

location. 

The design of the AQ/SAC-D system is to provide global weekly (seven-day) SSS maps 

using a polar-orbiting space-borne, and an active/passive remote sensor. This seven-day 

observations are combined to produce global measurements of SSS on a monthly basis with 

an accuracy of 0.2 psu (practical salinity unit) at a spatial resolution of 150 km. 

 

2.1: Aquarius Instrument 

The Aquarius is an active/passive microwave remote sensor, which simultaneously 

measures ocean emitted brightness temperature (TB) and radar backscatter at L-band [9]. 

The passive microwave radiometer operates at 1.4 GHz, with two Dicke receivers per feed to 

capture the linearly polarized ocean TBs. The active part is a single scatterometer (radar) 

that operates at 1.26 GHz, to capture the ocean normalized radar cross section. 

 
Figure 11: Footprint of Aquarius [1]. 
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The antenna system uses a parabolic reflector producing three-beam measurements 

in a push-broom fashion. These beams point at incidence angles 29.3°, 38.4°and 46.3°

for the inner, middle and outer beams respectively [9], creating three instantaneous fields of 

view (IFOVs) with a resolution of 79x94 km for the inner beam, 84x120 km for the middle 

beam, and 96x156 km for the outer beam, resulting in a swath of approximately 390 km [9], 

as shown in Figure 11. 

The Aquarius raw data is processed by the NASA Goddard Spaceflight Center, which 

provides the salinity data product to the science community, through NASA’s Physical 

Oceanography Distributed Active Archive Center at the Jet Propulsion Laboratory. 

2.2: Microwave Radiometer Instrument 

2.2.1: MWR System and Measurement Geometry 

The MWR is a three-channel, push-broom, Dicke radiometer, which is similar to the 

AQ L-band radiometer except in the operating frequencies and in the push-broom antenna 

configuration, as shown in Figure 12. Whereas the AQ provides 3 pushbroom beams 

(elliptical surface footprints in the cross-track plane), the MWR has two sets of 8 pushbroom 

beams that look both forward and aft of the cross-track plane. 

The MWR antenna subsystem comprises two separate parabolic torus reflectors and 

a set of eight feed-horns, arranged in two rows [6] This configuration results in two 

pushbroom antennas, one dual polarized (horizontal and vertical polarizations) looking 

forward (Ka-band, 36.5 GHz) and one (horizontally polarized) looking aft (K-band, 23.8 

GHz). By using separate frequency-scaled reflectors, the spot-beam antenna patterns for 
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individual feeds and frequencies are the same, which results in a common MWR 

instantaneous field of view (IFOV) of approximately 50 Km. The MWR antenna coverage is 

designed to match the AQ measurement swath (380 Km), formed by three AQ beams in the 

cross-track direction to the right hand side of the sub-satellite ground track. The geometry 

of the MWR/spacecraft ensures that eight of the horns are pointed forward of those of the 

Aquarius and that eight are pointed aft, covering the same 380km swath on the earth. 

In this manner, the eight MWR beams exceed the Nyquist requirement for the 

Aquarius SSS spatial resolution of 150 Km. Also, as seen in Figure 12, the individual MWR 

beam IFOVs lie on two conical arcs, with odd beams (the closest to the satellite sub-track) at 

earth incidence angle (EIA) of 52°and even beams with EIA of 58°. 

 
Figure 12: Measurement geometry for the AQ and MWR instruments. 
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Figure 13: Antenna switch matrix 
temporal sampling of horns 
(right) for 23.8 GHz. 

MWR provides three separate receivers and a 1x8 antenna switch matrix (as seen in 

Figure 13 for 23.8GHz) to sequentially sample each of the MWR spot beams. Each beam has 

an integration time of 240ms, thereby producing an overall cycle period of 1.92 s/MWR 

channel (as shown in the diagram in Figure 14: MWR Timing Diagram.), which results in a 

13.1 km advancement along-track between the IFOVs of any beam’s consecutive samples. 

Over the period of several minutes, the forward MWR measurements are collocated with the 

AQ IFOV’s, which given the AQ IFOV size, is equivalent to being simultaneous; and the same 

is true for the aft MWR beams. 

 
Figure 14: MWR Timing Diagram. 
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2.2.2:  MWR Geolocation Calculation 

 

The generation of the geodesic latitude and longitude (Earth location) for each MWR 

beam observation is provided by CONAE. This is based on a standard method of intersection 

of the line of sight of a sensor with the WGS-84 ellipsoid earth model, which is considered 

standard in current practices. This model, being an ellipsoid, does not take into account the 

elevations usually accounted for in Digital Elevation Models (DEMs), which are used in so-

called orthorectification algorithms. As such, MWR Geolocation does not account for the 

elevation above sea level; moreover, the mean error due to altitude variations does not have 

a significant impact on overall geolocation performance, as it is most important over ocean. 

The MWR calculations occur in post-processing at the CONAE ground facilities, during 

the production of the MWR L1B product [10], [11]. Given the definitive AQ/SAC-D orbit, the 

best estimate of satellite position, velocity and attitude are used in the line-of-sight 

intersection calculation that involves the following steps. First, a function is generated to 

calculate the spacecraft position/velocity for the time of the MWR observation 

(synchronized for all MWR channels). Next, based on the measured spacecraft attitude (roll, 

pitch and yaw orientation), the attitude quaternion is generated for the time of the 

observation. Following this, and based on pre-launch geometric calibration, the software 

uses measured alignment angles between the spacecraft coordinate system and the MWR 

beam boresight alignment angles (elevation and azimuth angles to produce the desired earth 

location relative to the satellite sub-point). Note that these angles were based upon pre-

launch antenna pattern measurements (boresight calibration for the 3x8 MWR beams). 

Using all of this information, and coordinate transformations, the software calculates a line 
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of sight, pointing to earth, in an Earth-Centered Earth-Fixed (ECEF) coordinate system, for 

all MWR beams at their respective observation times. The final step is the intersection of this 

line of sight with the earth, giving the desired ECEF x, y, and z position of the measurement, 

and then geodesic latitude/longitude associated with it. 

It should be noted that the assumed boresight angles for each 𝐾𝑎-band beam involved 

an analysis of separate measured antenna patterns for the vertical-polarization (V-pol) and 

horizontal-polarization (H-pol). Usually for a conical horn design, the boresight for the two 

polarization are co-aligned; however, since MWR boresight directions were determined 

independently from measured antenna beam patterns, they result in slightly different 

boresight angles (elevation and azimuth). The result is that V-pol and H-pol IFOV centers are 

systematically displaced, and whether this is true or an artifact of pattern measurement 

errors will be addressed in CHAPTER 4. 
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CHAPTER 3: GEOLOCATION ALGORITHM DESCRIPTION 

3.1:  Algorithm Overview 

 

The initial period selected for this analysis was from October 29th 2012 to October 

27th 2013. This period was based largely upon the necessity of the instrument reaching a 

stable radiometric calibration state. Freedom from short-term brightness temperature (TB) 

radiometric calibration drift is crucial since the estimation of land/water boundaries is 

based upon a polynomial fit of the time series of TBs at the land/water crossing. The existence 

of spurious TB data points within the fit range can vastly alter results, thereby ruining the 

parabolic approximation of a roughly Gaussian curve.  Processing was performed on the L1B, 

Beta v3.0 version of MWR data, in MATLAB .mat format.  

To effectively evaluate land-water crossings, certain sites are selected based upon a 

defined quality control (QC) criteria (see below), which captures results that frequently 

approximate ideal evaluation conditions. Once sites are selected for each beam and 

polarization, the data record is searched for locations at which MWR crosses each site. After 

such a time series is found, calculations are performed to project a point at which the 

land/water crossing is likely to have occurred (see Section 3.5:); this process is repeated for 

the entire data record under evaluation, and the results are aggregated with specific 

attention to disregarding outliers. 
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3.2: MWR Two-Dimensional Convolution 

In the previous work, Catherine May [8] provided a 1D theoretical justification for the 

max-slope-point method of estimating the sensor derived land/water crossings. Recall that 

from above, this maximum slope of brightness temperatures corresponded to be the point 

at which the IFOV is 50% filled by a land, and 50% by water, which is the definition of the 

land/water boundary. In this thesis, we extend this theoretical analysis to a 2D convolution 

of an ideal Gaussian beam, which is a realistic approximation of the actual MWR brightness 

temperature measurement for each beam position, as described below. 

Ulaby, Moore, and Fung [12] provide a continuous integral, which represents the 

convolution of a 2D scene brightness temperature, Tap, with the observing antenna’s power 

radiation pattern, Fn: 

 𝑇𝐴 =  
∬ 𝑇𝑎𝑝(𝜃, 𝜑) ∗ 𝐹𝑛(𝜃, 𝜑) ∗ sin 𝜃 𝑑𝜃 𝑑𝜑

 

4𝜋

∬ 𝐹𝑛(𝜃, 𝜑) ∗ sin 𝜃 𝑑𝜃 𝑑𝜑
 

4𝜋

    (1) 
 

In equation (1) a spherical coordinate system is assumed, where the antenna boresight lies 

on the is the +Z axis, 𝜃 represents the antenna pattern elevation angle, 𝜑 represents the 

pattern azimuth angle, and the result, 𝑇𝐴, is the output brightness temperature of the 

antenna.  

For the current contribution, a modified version of this continuous integral has been 

implemented as a discrete convolution.  

 
TA = N/D (2) 
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Consider, first, the numerator of equation: 

 𝑁 = ∬ 𝑇𝑎𝑝(𝜃, 𝜑) ∗ 𝐹𝑛(𝜃, 𝜑) ∗ sin 𝜃 𝑑𝜃 𝑑𝜑

 

4𝜋

 

 

(3) 

 = 2𝜋 ∫ 𝑇𝑎𝑝(𝜃) ∗ 𝐹𝑛(𝜃) ∗ sin(𝜃) 𝑑𝜃 
𝜃𝑚𝑎𝑖𝑛 𝑏𝑒𝑎𝑚

0

 (4) 

 = ∫ 𝑇𝑎𝑝(𝜃) ∗ 𝐹𝑛(𝜃) ∗ sin(𝜃) 𝑑𝜃 
𝜃𝑚𝑎𝑖𝑛 𝑏𝑒𝑎𝑚

0

 (5) 

 

≈ 𝑇𝑎𝑝(𝜃1) ∗ 𝐹𝑛(𝜃1) ∗ ∫ sin(𝜃1) 𝑑𝜃
𝜃1

0

+ 𝑇𝑎𝑝(𝜃2) ∗ 𝐹𝑛(𝜃2)

∗ ∫ sin(𝜃2) 𝑑𝜃
𝜃2

𝜃1

+ ⋯ + 𝑇𝑎𝑝(𝜃𝑚𝑏) ∗ 𝐹𝑛(𝜃𝑚𝑏)

∗ ∫ sin(𝜃𝑚𝑏) 𝑑𝜃
𝑚𝑏

𝑚𝑏−1

 

 

(6) 

 ≈ ∑ 𝑇𝑎𝑝(𝜃𝑖)𝐹𝑛(𝜃𝑖)[−𝑐𝑜𝑠𝜃]
𝜃𝑖−1

𝜃𝑖 ,

𝑚𝑎𝑖𝑛 𝑏𝑒𝑎𝑚

𝑖=1

 (7) 

where 𝜃𝑖  is the differential elevation angle, away from boresight, under consideration; 𝜃𝑚𝑏 

is the main-beam extent, which is assumed = 2.5*(HPBW/2). This equation gives an 

approximation of the numerator of equation (1) in small, discrete steps over the main beam 

of a circularly-symmetric radiation pattern – in this case a Gaussian. 

Considering next the denominator of equation (1), and performing a similar 

approximation: 

 𝐷 = ∫ 𝐹𝑛(𝜃, 𝜑) ∗ sin 𝜃 𝑑𝜃 𝑑𝜑
𝜋

0

 
(8) 
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 ≈ ∑ 𝐹𝑛(𝜃𝑖)[−𝑐𝑜𝑠𝜃]
𝜃𝑖−1

𝜃𝑖 ,

𝑁

𝑖=1

 
 (9) 

Note here that the summation is to N, where N represents the incremental angle, 

which corresponds to 𝜋. Combining the numerator and denominator of this discrete 

expression, the result is: 

 
∑ 𝑇𝑎𝑝(𝜃𝑖)𝐹𝑛(𝜃𝑖)[−𝑐𝑜𝑠𝜃]

𝜃𝑖−1

𝜃𝑖   𝑚𝑎𝑖𝑛 𝑏𝑒𝑎𝑚
𝑖=1

∑ 𝐹𝑛(𝜃𝑖)[−𝑐𝑜𝑠𝜃]
𝜃𝑖−1

𝜃𝑖   𝑁
𝑖=1

 
(10) 

Equation (10) explains that the incremental radiation pattern of a circularly-

symmetric antenna may be approximated by the sum of a series of incremental products 

between the pattern, and the apparent brightness temperature scene. 

An illustration of such a convolution is shown in Figure 15. The top panel shows a 

time series of IFOVs as they progress from water (on the left side) to land (on the right). The 

water is radiometrically cool – in this case modeled as 180 Kelvin – and the land is modeled 

as a hot 300 Kelvin. The progression in color of the elliptical IFOVs in the top panel 

represents that each differential ellipse within the IFOV – the 𝜃𝑖s in (10) - is receiving more 

radiometric energy as the IFOV transitions from ocean to land. The bottom panel shows the 

numerical results of this series of convolutions. The blue curve represents the set of raw 

convolutions of an ideal 2-D Gaussian beam with this brightness temperature scene, while 

the red curve represents the differences of these temperatures. Note that for ease of viewing, 

the red curve has been shifted and scaled; actual peak values are approximately 51.5 Kelvin. 
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Figure 15: Top panel: antenna IFOVs progressing from radiometrically cool ocean (left) to hot 
land (right). Bottom panel: brightness temperature (blue) and slope (deltas) of brightness 
temperature (red). 

As is visible from this example, the highest slopes of TB occur in the vicinity of 

land/water crossings, for radiometric instruments with 2D circularly symmetric antenna 

patterns, when observing coasts with an idealized “step–function” transition. This serves as 

a motivation for finding locations on the earth that exhibit properties similar to the ideal 

step-function coast, which will be shown in 3.3:. 

 
3.3: Site Selection 

As it was mentioned in Section 1.1.5:, Figure 6 illustrates a simplified, 1-D step-

function coast, transitioning from ocean temperatures on the left, to land temperatures on 

the right. This simple model shows that the point of maximum 𝑇𝐵 slope is collocated with the 

50% fill point 

51.5 K 

60 

35 

10 
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true coast. Its accuracy is due to the transitional nature of the coast: an ideally flat, unit step 

change from ocean 𝑇𝐵 to land 𝑇𝐵. Clearly this does not exist in nature, however the closer a 

land/water crossing is to this situation, the more accurate the crossing location estimation 

will be. 

Since rapid transition that approximates this step-function represents a good coastal 

interface (in an accuracy-of-estimation sense), searching for high TB slope within a time 

series naturally suggests itself as a likely method of finding ideal analysis locations. 

 

3.3.1:  Supersite Definition 

 

Upon finding points in TB time series data, which exhibit strong slope features, it is 

necessary to further investigate the locations at which these features occur. Using visible 

imagery from Google Earth, each potential site is examined (quality controlled) to eliminate 

the following cases:  

1. the area must NOT contain any significant area % of man-made structures; roads, 

bridges, buildings, etc. This is important because these structures have different 

radiometric properties from those of natural land. 

2. the area of land must NOT contain free water is the form of: rivers, lakes, bays, channels, 

swamps or other. Only land free from significant sources of water is acceptable, but 

surface vegetation of any type is not a concern. 

3. the coastline of interest should be relatively straight for a length significantly longer than 

the MWR IFOV. The reason for this is that the 50% beam-fill is difficult to define for 
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complex shapes and also the location of successive passes over the same area will occur 

in slightly different locations due to changes in the satellite ground track. 

4. Finally, there is one other consideration, which cannot be mitigated by quality control 

and this is the occurrence of weather. Rain over oceans can significantly increase the 

ocean TB at random locations, which could produce significantly distortion of the TB slope 

over a land/water crossing. The only effective means is to consider rain as a transient 

error source that can produce outliers that can be removed by statistical means. 

Thus the motivation for investigating areas of land/water crossing heuristically using 

Google Earth images results in areas that meet the above criteria are referred to as 

“supersites.” 

Madagascar poses an example of one such site in Figure 16. Note the straight, 

vegetative coast in the southeast, and the relative size of the IFOV in comparison. This 

location exhibits all of the characteristics of an excellent supersite. It is important to note, 

however, that supersites differ by beam and polarization. This is because of the significant 

variation in crossing angle and location for each beam; since a large number of sites are 

needed for evaluation, in the next section a procedure for rapidly identifying sites is shown.  

3.4: Procedure for Finding Supersites 

A novel contribution of this thesis is an automated method of finding these sites. The 

procedure starts by classifying a given orbital dataset according to the longitude of its 

ascending node; since there are 103 orbits in a single cycle, there are naturally 103 bins for 

orbital datasets. After all orbits in the period of interest are classified, all the datasets are 

aligned in a 2-D matrix, such that the ascending nodes occur in the same column; then, the 
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mean of the resulting matrix is taken along its columns, giving a single representative time 

series of orbits that fall into this ascending node bin. 

 

Figure 16: IFOVs crossing Madagascar on an ascending pass. [13]. 

 

After orbit classification, the next step is to calculate the numerical difference of the 

resulting averaged time series, with the aim of finding locations with 𝑇𝐵 slopes that exceed a 

desired threshold. These candidate sites are bounded between ±60° latitude, to ensure 

avoidance of polar ice. Finally, through Google Earth’s kml interface, the sites that meet 
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threshold criteria for qualitative investigation are displayed, and the sites that exhibit ideal 

qualities are stored for later evaluation. A flow chart of this process is exhibited in Figure 17. 

Examination of the averaged time series – representing all orbits falling into an 

ascending node bin – is done by simultaneously observing the symmetry and maximum 

slope point of the 𝛥𝑇𝐵 plot as shown in Figure 18, and the linked nadir view of the 

corresponding Google Earth image, shown in Figure 19. Symmetry of the slopes around the 

maximum slope point has been found to enhance the accuracy of curve fitting, and 

correspondingly, the calculation of coastal crossing. 

 

 
Figure 17: Supersite-evaluation flow chart. 
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Figure 19: Google Earth image of ideal site and 3dB 
IFOV. 

 

3.4.1:  Supersite Statistics 

The location of supersites depends upon the MWR beam ground-tracks and the 

intersection of favorable coastlines. There is no set criterion for the number of supersites 

required; however, since statistics derived from the analysis of these land/water crossings 

Figure 18: Inspection of averaged data for site fitness 
determination. 
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at supersites, then more is better. The statistical results are clearly dependent upon the 

number of passes over these points, it is necessary to view the individual land/water passes 

as-well-as the collection of passes of such sites per beam and polarization. Table 1 

summarizes this information and a global supersite map combining all MWR beams is given 

in Figure 20. Overall there appears to be an adequate number of supersites to allow a 

subdivision of statistics to examine the mean and standard deviations of collocation errors 

e.g., comparing collocation errors separately for ascending versus descending passes. 

 
 

 
Figure 20: Ascending and descending supersites, all beams 
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Table 1 – Number of Supersites per Beam and Polarization 

 36.5V 36.5H 23.8H 

Beam 1 

Ascending Supersites 13 25 10 

Descending Supersites 8 19 5 

Total Supersites 21 44 15 

Beam 2 

Ascending Supersites 9 21 8 

Descending Supersites 7 8 4 

Total Supersites 16 29 12 

Beam 3 

Ascending Supersites 20 26 14 

Descending Supersites 14 11 9 

Total Supersites 34 37 23 

Beam 4 

Ascending Supersites 16 20 10 

Descending Supersites 7 14 6 

Total Supersites 23 34 16 

Beam 5 

Ascending Supersites 15 20 13 

Descending Supersites 8 14 7 

Total Supersites 23 34 20 

Beam 6 

Ascending Supersites 15 22 9 

Descending Supersites 13 21 7 

Total Supersites 28 43 16 

Beam 7 

Ascending Supersites 17 19 7 

Descending Supersites 16 14 2 

Total Supersites 33 33 9 

Beam 8 

Ascending Supersites 9 16 10 

Descending Supersites 9 8 7 

Total Supersites 18 24 17 

Global Totals 

Total Ascending 114 169 81 

Total Descending 82 109 47 

TOTAL 196 278 128 
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The 36.5 GHz channel’s horizontal polarization accumulated the largest number of 

supersites through the search procedure, while the 23.8 GHz channel accumulated the least. 

This could be a result of ΔTB threshold values that need further refinement; the threshold is 

shown as a red horizontal line in the top panel of Figure 18, and is a manually-set parameter, 

determined prior to performing the supersite search procedure. 

For nearly all polarizations and beams, a significantly larger number of supersites 

were found for ascending revolutions than those of descending revolutions. No algorithmic 

feature explains this bias: points under consideration are aligned by ascending node, and 

bounded to encompass an equal portion of ascending and descending time within each 

revolution. 

The 23.8 GHz channel shows far fewer supersites than either of the 36.5 GHz 

channel’s polarizations. Examinations of TB distributions around land/water crossings for 

the three beams could potentially offer some insight, as it can be seen Figure 21, and Figure 

22. In particular, Figure 21 shows that the 23.8 GHz channel has a larger fraction of 

intermediate data points – those between clearly delineated ocean and land – than either of 

the 36.5 GHz channels Figure 22 and Figure 23. It is possible that this is an indication of 

poorly defined boundaries for this channel, though is out of the scope of this research and 

therefore this is a conclusion left to CONAE to make. 
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Figure 21: Brightness temperature distributions near land/water crossings, for 23.8 
GHz. 

 

 
Figure 22: Brightness temperature distributions near land/water crossings, for 36.5 
GHz Horizontal Polarization. 
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Figure 23: Brightness temperature distributions near land/water crossings, for 36.5 
GHz Vertical Polarization. 

 

3.5: Land/Water Crossing Projection 

To calculate the instrument-observed coast, the previously determined supersites are 

compared with time series TB data to determine if a particular data record contains points, 

which pass near the center of any designated supersites. If such points are found, their TBs 

are then differenced to determine the rate of change between each sample. Those differences 

are then fit to a parabola, and the parabola’s vertex is used to determine a projected latitude 

and longitude of where the IFOV likely crossed. This projected point is then compared to the 

nearby high-resolution coastline to determine the coastal point nearest to it. The distance 

from the coastal point to the projected point is the error recorded for that supersite crossing. 

These results are then aggregated into a master data structure which contains their 

geolocation information, as well as several details about the coastal crossing of each. This 
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process is illustrated pictorially in Figure 24: Algorithm for calculating instrument-observed 

coast which presents the algorithm for instrument-observed coast calculation. 

 
Figure 24: Algorithm for calculating instrument-observed coast. 

 

3.5.1:  Step 1: Check Data Latitude and Longitude for Supersite Proximity 

Supersites are stored in a data structure which is organized by beam and polarization, 

as well as ascending and descending status; the MWR data record is organized similarly, so 

when a file is loaded, the combinations of beam and polarization are traversed 

correspondingly in the supersite record and the file. A window is constructed 100 km in each 

direction from a supersite, and translated to lat/long; points in the data record are then 

compared to this window, as well as a check to ensure that an ascending match is found near 

an ascending supersite, and vice versa. If at least seven points are found near an appropriate 

supersite, calculations for that crossing commence. 

 

3.5.2:  Step 2: Difference Sequential TBs 

Data points within each window are differenced to find the numerical derivative of 

brightness temperatures in the neighborhood of a supersite; since these points are slopes 

between points, they are each assigned a lat/long that is midway between those of the 
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samples used to generate them. This process is illustrated in Figure 25. In this figure, green 

arrows indicate later points, and yellow arrows indicate earlier points which are subtracted 

from them to generate differences.  

 

Figure 25: Differencing of sequential points to generate slopes between 
brightness temperatures. 
 

 

3.5.3:  Step 3: Fit Parabola for Neighborhood of Maximum Difference 

Upon generating a time series of brightness temperature differences, those ΔTBs are 

fit with a parabola. This is done with MATLAB’s polyfit command, which uses a standard 

Vandermonde matrix to perform the fitting, and results in a set of three coefficients 

𝐴, 𝐵, and 𝐶, representing the quadratic, linear, and constant terms of the parabola, 𝑃: 

 
𝑃 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶, (11) 

Fit Parabola 

Derivatives 
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where x is simply the sample number in the current window, as shown in Figure 26. 

 

3.5.4:  Step 4: Calculate Parabola Vertex 

The vertex of the fit parabola calculated in the previous step is also calculated in a 

well-known manner, as: 

 
𝑥𝑉𝑒𝑟𝑡𝑒𝑥 = −

𝐵

2𝐴.
. 

(12) 

This 𝑥 – again in unitless sample number – is rarely an integer; note the position of 

the red triangle which represents it in Figure 26. This triangle is placed on the red parabola, 

which has been fit to the green time series of brightness temperature slopes; the slopes are 

generated from the blue brightness temperatures, and placed halfway between them in 

sample position. 

Thus, the conceptual position of the vertex of a parabola, which has been fit to 

brightness temperature numerical differences, lies somewhere between samples and must 

be interpolated.  

3.5.5: Step 5: Interpolate latitude and longitude of vertex 

The interpolation is straightforward: it is treated as a linear weight, which is applied 

to the difference between the coordinates of the samples, which surround it. In the case 

shown in Figure 26, the x which corresponds to the sample number of the fit parabola’s 

vertex is 4.37; this is interpreted as 37% of the distance between the coordinates of point 4 

and point 5, and is geolocated there. 
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Figure 26: TBs and slopes, with fit parabola and its maximum at sample 
4.37. 
 

3.5.6: Step 6: Calculate Distance to Nearest Coastal Point 

The mispointing error present in each assessment is simply the vector norm of the 

distance between the projected point, and the nearest coastal point, combined with a logical 

assessment of whether the point leads or lags the actual crossing; if the point follows the 

crossing, it is deemed to be a positive error, and if it precedes the crossing, it is deemed a 

negative error. Utilizing this, the error may be quantified as 

 𝑒𝑟𝑟𝑜𝑟 = 𝑛𝑜𝑟𝑚 ([
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑𝑙𝑎𝑡 − 𝑐𝑜𝑎𝑠𝑡𝑙𝑎𝑡

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑𝑙𝑜𝑛 − 𝑐𝑜𝑎𝑠𝑡𝑙𝑜𝑛
]) ∗ 𝑒𝑟𝑟𝑜𝑟 𝑠𝑖𝑔𝑛 (13) 

where the 𝑛𝑜𝑟𝑚 is the familiar “Pythagorean” ℓ2 vector norm, which gives the magnitude of 

the error vector. This is illustrated in Figure 27 where the ocean is pictured at the top of the 

figure, land at the bottom, a dotted black coast separating them, a black arrow representing 
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ground-track direction, an open circle representing the projected land/water crossing point, 

and finally, a blue double-ended arrow illustrating the distance between projected 

radiometric slope maximum, and the nearest coastal point. It is worth observing that the 

error distance is not constrained to be parallel to ground track; this is a result of the coastal 

point nearest to the projection being used. 

 

Figure 27: Calculation of mispointing error. 

 

Note that the conversion between lat/long and earth-projected distance has been 

omitted from equation (13) for clarity; the calculations are simple, and treated as linear 

within the small regions under consideration. The justification for this lies in the constant 

nature of latitude calculations, and the linearity of longitude calculations in a region. For 

example, within six IFOVs, the instrument’s ground track traverses 5 * 13.1 km, or 65.5 km; 
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since latitude calculations are constant, this amount will always be equal to a fixed number 

of latitude degrees, i.e.: 

 𝐷𝑒𝑔𝐿𝑎𝑡 =
𝐷𝑖𝑠𝑡𝑘𝑚

2𝜋 ∗ 𝑅𝑎𝑑𝑖𝑢𝑠𝐸𝑎𝑟𝑡ℎ
∗ 360°. 

(14) 

In the 65.5 km case, this is equal to .58°. The calculation of longitude at this distance 

is simply the product of the above number and the cosine of the latitude. Obviously the cosine 

function is most sensitive to changes in the neighborhood of 90°; since the area of 

investigation is bounded by ±60° latitude, that angle is representative of the worse-case 

scenario of angle sensitivity. Below, Figure 28 illustrates that in this scenario, less than 0.3 

km of error can be experienced in geolocation, far less than both the size of the IFOV, and the 

gap between consecutive IFOVs. 

 
Figure 28: Geolocation error in IFOV calculation window. 
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3.5.7:  Step 7: Aggregate Results by Site, Beam, and Polarization 

The preceding steps are performed for each supersite, and each data file. Upon their 

completion, the procedure returns a data structure which consists of several results, 

depicted in Figure 29. The primary results are the signed error in kilometers, and its 

accompanying identification information: beam, polarization, ascending or descending flag, 

and projected crossing point. To ease any later analysis which might need to be done, several 

other data are captured: latitude, longitude, TB, azimuth angle for each point in the vicinity 

of the supersite, as well as the coordinates of the local coastline, the coordinates of the 

designated supersite, and the name of the original data file from which each result was 

derived. The results and identification are then easily parsed to generate statistics, and can 

also be used to reconstruct the crossing, in case of any potential error, or for ease of peer 

review. 

 
Figure 29: Sample data structure of a single land/water crossing; the 
completeness of this result enables reconstruction of the conditions 
which created it quickly and easily. 
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3.6: Error Correction 

Initial error assessments were performed with ideal simulations, as referenced in 

Figure 6. In such simulations, where a coastline is modeled as a perfect step function, the 

maximum slope location is found to exist exactly where the -3dB beam footprint is half-filled 

by water and land. However in real measurements, radiometric aberrations, such as inland 

water and human development, distort 𝑇𝐵 measurements in ways, which are difficult to 

define; this is the reason for choosing straight, well-defined coastlines for site evaluation. 

After ideal sites were found, statistics were generated from the mispointing results, giving 

an overall view of the errors present in each beam. These results are presented in CHAPTER 

4.   
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CHAPTER 4: RESULTS AND VALIDATION 

4.1:  Coastal Boundaries 

Analysis of the results indicates largely consistent mis-pointing for each beam, with a 

deviation between the vertical and horizontal polarizations of several kilometers for the 36.5 

GHz channels. An example of this mispointing error for the Beam 1 - 36.5GHz, V- and H-Pol 

is shown Figure 30 below. In this figure, red points indicate the coastline location of the 

projected points in vertical polarization, while blue points represent the ones in horizontal 

polarization. From the simulation of the 2D Gaussian antenna pattern convolution with the 

WindSat observed TBs is believed that the sensor derived land/water boundary should be 

independent of the polarization used (see Appendix-C).  Thus, since these comparisons are 

calculated from data provided by the same MWR horn, they should lie atop one another. This 

disparity is probably attributed to the fact that CONAE uses different boresight angles for 

each polarization. This is a finding of our analysis, which need to be addressed by CONAE 

during future MWR reprocessing. 

4.2: Results Analysis 

Within each radiometer channel, the processed data exhibit central trends stemming 

from the clustering, which is illustrated in Figure 31, Figure 32 and Figure 33, for 23.8 GHz, 

36.5 GHz H-pol and 36.5 GHz V-pol, respectively. In particular, the left panel of Figure 32 the 

ascending runs – those in which the instrument crosses the equator from south to north – 

are shown. Note that a normal distribution fits these data bins reasonably well, however the 

descending results are shown in the right panel, and no simple distribution seems to fits 

these well. Determination of the source(s) of these differences is out of the scope of this 
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thesis and therefore it is left to CONAE. The remainder of these error distribution figures by 

beam and polarization are shown in APPENDIX A: FULL HISTOGRAMS BY BEAM, and 

depicted in stem-and-leaf plot in Figure 34. 

 
Figure 30: Errors in land-water crossing for beam one 
over a site in southern Australia. The flight direction in 
this case is north, which is oriented to the top of the 
figure. 

 

As with any observations, outliers occurred in the collection brightness temperatures, 

and calculation of maximum crossings and error distances. These outliers were removed 

with a simple procedure. First, the data from the inner 60% of all values were taken; to these, 

a normal distribution was fit; then, based upon the derived normal distribution, a z-score 

was derived for each value. Measurements were deemed outliers if their z-score was three 

or higher; that is, if they equal to or more than three standard deviations away from the 

mean. As a point of clarity, note that in this case, the “measurement” is the mispointing error. 
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Figure 31: Error distribution for Beam 7 of the 23.8 GHz channel, horizontal 
polarization, ascending (left panel) and descending (right panel). 
 

 
Figure 32: Error distribution for Beam 6 of the 36.5 GHz channel, horizontal polarization, 
ascending (left panel) and descending (right panel). 
 

 
Figure 33: Error distribution for Beam 5 of the 36.5 GHz channel, vertical polarization, 
ascending (left panel) and descending (right panel). 
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In the top panel of Figure 34, the 23.8 GHz channel’s mispointing error is depicted 

beam-by-beam. This is the most “well-behaved” of all channels, tending to have a negative 

error for all channels, with high variation only on beams one and four. The panel below 

shows the error and variation in the 36.5 GHz channel’s vertical polarization. Wide variations 

in error from beam to beam are visible, and variation larger than that of the 23.8 GHz channel 

is evident on average. The bottom panel displays these same statistics for the 36.5 GHz 

channel’s horizontal polarization. 

As discussed above (section 4.1), there are coastline location differences between the 

vertical and horizontal polarizations of the 36.5 GHz channel, and Figure 35, Figure 36 and 

Figure 37 highlight these. The top panel overlays the two polarizations, and the bottom panel 

depicts the difference. From this figure it is evident all beams and pols have different 

collocation mean errors. Since the boresight angles are derived separately by beam and 

polarization, this result is not surprising, and it indicates that CONAE should derive a 

consistent set of boresight angles that causes V- and H-pols to overlap and that removes the 

mean mispoint angle by beam number.  

Additionally, a side-by-side comparison of the polarizations is available in Table 2 – 

Error for Each Beam, where each beam exhibits its own individual mispointing error. Table 

2 also shows a summary of mispointing error statistics, by beam and polarization, for the 

sample period. 
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Figure 34: Errors and deviations for each beam and polarization. 

 

 

Figure 35: Comparison of the two polarizations the 36.5 GHz channel (top) and 
computed difference between these polarizations (bottom). 
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Figure 36: Estimated land/water crossings of 36.5GHz 
Beam 5, vertical polarization. 

 
Figure 37: Estimated land/water crossings of 36.5GHz 
Beam 5, horizontal polarization. 
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Table 2 – Error for Each Beam 
 36.5V 36.5H 23.8H 

Beam 1 

Median Error, km M = 1.98 M = 4.70 M = 1.62 

Error Std. Dev, km σ = 4.31 σ = 4.52 σ = 3.72 

Number of Measurements n = 699 n = 1193 n = 511 

Beam 2 

Median Error, km M = 6.82 M = 5.33 M = −0.15 

Error Std. Dev, km σ = 2.06 σ = 5.49 σ = 5.55 

Number of Measurements n = 483 n = 802 n = 441 

Beam 3 

Median Error, km M = 4.27 M = 3.08 M = −1.10 

Error Std. Dev, km σ = 3.75 σ = 2.46 σ = 3.58 

Number of Measurements n = 1100 n = 1020 n = 700 

Beam 4 

Median Error, km M = 2.47 M = 3.25 M = −0.94 

Error Std. Dev, km σ = 1.93 σ = 4.19 σ = 2.26 

Number of Measurements n = 722 n = 989 n = 536 

Beam 5 

Median Error, km M = 1.29 M = 2.78 M = 1.62 

Error Std. Dev, km σ = 2.48 σ = 3.23 σ = 5.65 

Number of Measurements n = 790 n = 1076 n = 712 

Beam 6 

Median Error, km M = 2.70 M = 1.97 M = −.30 

Error Std. Dev, km σ = 2.09 σ = 4.25 σ = 6.34 

Number of Measurements n = 745 n = 1196 n = 561 

Beam 7 

Median Error, km M = 5.29 M = 4.68 M = 1.05 

Error Std. Dev, km σ = 3.95 σ = 4.61 σ = 1.91 

Number of Measurements n = 920 n = 1032 n = 316 

Beam 8 

Median Error, km M = 3.84 M = 4.85 M = .87 

Error Std. Dev, km σ = 4.15 σ = 2.47 σ = 3.96 

Number of Measurements n = 486 n = 763 n = 522 
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4.3:  Ascending and Descending Characteristics 

 

The coastline collocation data indicate difference in ascending and descending revs, 

and certainly satellite attitude errors could be different for ascending and descending. 

However, similar beam point analysis for the AQ sensor beams has not indicated this issue. 

Therefore the cause is more likely the error associated with this thesis approach. Taking the 

difference of ascending and descending means, a nonzero disparity is evident, as shown in 

Table 3. Figure 31, Figure 32, and Figure 33 give some insight as to the numerical source of 

these differences: there are clear differences in ascending and descending error distributions 

for several beams and polarizations. The cause of this disparity remains unknown, however 

the data suggest that the 36.5 GHz, horizontal polarization suffers from this problem more 

than the other channels. One possible explanation for this variation is seasonal; since MWR 

passes ascending nodes at around 5:00 a.m. local time (close to sunrise) it is possible that 

seasonal affects have contributed to this change. 

Table 3 –Ascending/Descending Difference (km) 

 36.5V 36.5H 23.8H 

Beam 1 -0.65 -2.99 1.49 

Beam 2 7.92 -4.98 4.23 

Beam 3 3.91 2.96 0.57 

Beam 4 0.85 -1.69 -1.54 

Beam 5 1.31 1.11 1.54 

Beam 6 3.95 3.69 1.50 

Beam 7 -0.44 -3.88 0.43 

Beam 8 2.45 5.24 3.76 

 



51 

 

Another explanation may lie in Figure 38. This figure shows an aggregation of the 36.5 

GHz channel’s vertical polarization; each row is one orbit, and is separated from adjacent 

rows by one week; each column is a single sample. Rows are aligned by ascending node. The 

first 36 weeks share similar features most of the time, but the nature of the data changed at 

week 37, and from then on showed much greater variation from orbit to orbit. 

 

Figure 38: Vertically stacked time series of a single orbit. Note 
apparent, unexplained change around week 37. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

 

From the analysis conducted, it appears that the MWR instrument does exhibit some 

mispointing error. Referring back to Table 2 – Error for Each Beam, some corrective 

quantifications are suggested. These numbers have yet to be applied to the MWR data record 

and re-processed. Currently, the MWR instrument is in a non-functioning state on an 

indefinite basis; indications from the Aquarius team suggest that this is unlikely to change. 

Thus the correction must be applied to the existing data record from launch until MWR was 

powered off on 2014/08/24, and because of this there is no opportunity to see how the 

correction values impact new data. 

In the present work, an algorithm has been created which allows the calculation of 

MWR geolocation error from the time series of brightness temperature data; this error is 

expressed in kilometers, which is expected to admit correction angles after further work 

from CONAE is performed. Furthermore, a simulated two-dimensional convolution of an 

ideal Gaussian antenna pattern has been implemented to validate the approach; this 

technique concurs with past work, and with theory. 

To implement the designed algorithm on the existing three-year data record of MWR, 

a software package in MATLAB has been produced, and refined: initial efforts took several 

days on a high-powered server to process a year of data, but the in its current state – shown 

in APPENDIX B: MATLAB CODE – the package of MATLAB functions and scripts together is 

able process the full three-year data record from CONAE in three hours, on a simple dual-

core PC. The original 22,000 lines of code have been reduced to just over 2,000 lines of 
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legible, functional code which may be handed off to any external group, to process their TB 

with minimal alteration.  

The beginning processing goal was to extract metrics from one full year of MWR data, 

representing one full seasonal cycle; this goal has been met, and extended to the entire three-

year data record.  

The deliverable to CONAE is the record of geolocation error distances, which are 

intended to allow that organization to continue investigation of the sources existing 

geolocation error; this goal has been met, in the form of a single HDF5 file. 

In summary, all of the existing goals for this research have been met, and the resulting 

code, documentation, and data have been delivered to CONAE. 

 

5.1: Future Work 

 

Though the MWR mission is stalled, the technique herein may be applied to any TB 

data. Because of this, any refinements in accuracy, as well as analytical and empirical results 

may enhance the analysis of beam-pointing in the future. 

There are two specific points, which are recommended for further investigation: 

1. Monte Carlo simulations should be performed to ascertain the effect of coast shape, 

land/water TB difference, and most importantly, actual coastline location versus 

distance from nearest point on calculated crossings.  

2. Secondly, the use of a sigmoid curve should be investigated to find the maximum 

slope point. Heuristic evaluations indicate that a parabola can only be fit well to five 
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points of MWR data, which risks placing too high an emphasis on any one data point; 

for well-chosen sites, data suggest that a sigmoid or hyperbolic tangent function 

would permit the use of many more data points, and possibly improve robustness of 

this technique. 

3. Investigate the relative alignment of the IFOV ellipse major axis relative to the 

coastline. When the major axis of the ellipse is approximately perpendicular, there 

seems to be more consistent collocation errors with smaller standard deviations. 

4. Develop an error model to characterize collocation error estimates uncertainties 

associated with the algorithmic assumptions and MWR TB error characteristics. 

5. Perform an analysis to establish the covariance matrix between collocation errors for 

the various beams and pols. 
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APPENDIX A: FULL HISTOGRAMS BY BEAM 
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 In the present appendix, histograms are presented which characterize the differences 

found between coastal boundaries, and computed maximum TB slope. Histograms are 

separated by beam, polarization, and whether they are ascending or descending. In each 

case, an attempt was made to fit a normal curve to the histogram (red line). The location of 

the mean of this curve is marked (blue star), and the title information contains both the 

median of the results (for outlier robustness), and the peak of the normal curve.  
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APPENDIX B: MATLAB CODE 
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In the following code, a MATLAB package is presented which can be used to process 

MWR data, from raw .mat files. Scripts are included to classify supersites from raw Beta v3.0 

files, group them by beam and polarization, search for these supersites in Beta v3.0 files, 

compute and project the maximum slope point onto a 1km coastline map, and finally record 

these results in a single structure, results. 

Classify_Orbit.m 

function output_struct = classify_orbit( data ) 

if nargin == 0, 

        clc 

        data = evalin( ‘base’ , ‘current_file.data’ ) 

    end 

Pre-Process: Generate a list of fields to grab, set up 

data_fields             = fieldnames( data )                                ; 

    empty_cells             = cell( size( data_fields ) )                       ; 

    zero_cells              = repmat( { zeros( 4000 , 1 ) } , 3 , 1 )           ; 

    output_fields           = vertcat( data_fields’ , empty_cells’ ) 

    output_struct           = struct( output_fields{ : } )                      ; 

    for i_pols  = 1 : numel( data_fields ) 

        output_struct.( data_fields{ i_pols } ) = process_pol( data.( data_fields{ 

i_pols } ) )     ; 

        if isempty( output_struct.( data_fields{ i_pols } ) ) 

            return 

        end 

    end 

end 
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Main Processing: pad input data with NaNs so it can be processed rectangularly 

function pol_info = process_pol( pol_struct ) 

    graph = false                                                               ; 

    for i_beam = 1 : 8 

        BF                      = [ ‘B’ num2str( i_beam ) ]                     ; 

        in_size                 = size( pol_struct.( BF ).Lat )                 ; 

        pad_mat                 = NaN( [ 4001 2 ] - in_size )                   ; 

        pol_info.( BF ).Lat     = [ pol_struct.( BF ).Lat ; pad_mat ]         ; 

        pol_info.( BF ).Lon     = [ pol_struct.( BF ).Lon ; pad_mat ]           ; 

        pol_info.( BF ).Tb      = [ pol_struct.( BF ).Tb  ; pad_mat ]          

 ; 

 

        [ mins , maxes ]        = minmax( pol_info.( BF ).Lat )                 ; 

        equator_indeces         = find_zero_crossings( pol_info.( BF ).Lat )    ; 

        if isempty( equator_indeces.asc ) 

            pol_info.( BF ).Lat     = [ ]                                       ; 

            pol_info.( BF ).Lon     = [ ]                                       ; 

            pol_info.( BF ).Tb      = [ ]                                       ; 

            pol_info.( BF ).asc_node= [ ]                                       ; 

            return 

        end 

 

        if graph 

            close all hidden 

            figure 

            plot( pol_info.( BF ).Lon , pol_info.( BF ).Lat , ‘LineSmoothing’ , ‘on’ 

) 

            grid on 

            xlim( [ -182 182 ] ) 

            ylim( [ -92 92 ] ) 

            hold on 

            scatter( pol_info.( BF ).Lon( equator_indeces.asc ) , pol_info.( BF ).Lat( 

equator_indeces.asc ) , ‘r’ ) 

            scatter( pol_info.( BF ).Lon( equator_indeces.des ) , pol_info.( BF ).Lat( 

equator_indeces.des ) , ‘g’ ) 

            legend( { ‘Flight Path’ , ‘Ascending Node’ , ‘Descending Node’ } ) 
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        end 

 

        %   We have a padded 4001 x 1 vector, this shifts the ascending 

        %   node to be at the quartile for use with imagesc. 

        shift_mat                   = [ 1001 - equator_indeces.asc( 1 ) , 0 ]       ; 

        pol_info.( BF ).Lat         = circshift( pol_info.( BF ).Lat , shift_mat )  ; 

        pol_info.( BF ).Lon         = circshift( pol_info.( BF ).Lon , shift_mat )  ; 

        pol_info.( BF ).Tb          = circshift( pol_info.( BF ).Tb  , shift_mat )  ; 

        pol_info.( BF ).asc_node    = pol_info.( BF ).Lon( 1001 )                   ; 

        if i_beam == 1 

        fprintf( ‘Ascending Note for beam %d at %0.3f longitude\n’ , i_beam , pol_info.( 

BF ).asc_node ) 

        end 

    end 

end 

Convenience function for finding min and max in one function call 

function [ minimums , maximums ] = minmax( x ) 

    x( x < -180 )   = NaN                               ; 

    min_val         = min( x )                          ; 

    max_val         = max( x )                          ; 

    minimums        = find( x == min_val )              ; 

    maximums        = find( x == max_val )              ; 

end 

Function to find the zero crossings, used to find equator on latitude 

function crossings  = find_zero_crossings( x ) 

    x( x < -180 )   = NaN                               ; 

    raw             = [ 0 ; diff( sign( x ) ) ]         ; 

    crossings.asc   = find( raw == 2 )                  ; 

    crossings.des   = find( raw == -2 )                 ; 

    plot( x ) 

    drawnow 

end 
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Find_SuperSite_from_bulk_tbs.m 

clc 

clear 

close all hidden 

% profile on 

% camera      = ‘ge’ 

addpath( genpath( ‘C:\Users\Student\Dropbox\CFRSL Projects\MWR GeoLocation\Brad’’s 

Code\Analysis’ ) ) 

 

if ~exist( ‘ge’ , ‘var’ ) & ( camera( 1:2 ) == ‘ge’ ) 

    addpath( genpath( ‘C:\Users\Student\Dropbox\CFRSL Projects\MWR 

GeoLocation\Grunt_Scripts’ ) ) 

    ge = GEserver       ; 

end 

 

if ~( exist( ‘lat’ , ‘var’ ) && exist( ‘lon’ , ‘var’ ) ) 

    coast_file  = ‘C:\Users\Student\Dropbox\CFRSL Projects\MWR GeoLocation\Brad’’s 

Code\coast_1km.mat’ 

    load( coast_file ) 

end 

 

lat_min                 = -40                                                               

; 

lat_max                 = 60                                                                

; 

pole_cut                = ( lat > lat_max ) | ( lat < lat_min )                             

; 

fprintf( ‘%d coast points cut, out of %d points. %0.2f reduction.\n’ , sum( pole_cut ) 

, numel( lat ) , sum( pole_cut ) / numel( lat ) ) 

lat( pole_cut )         = [] ; 

lon( pole_cut )         = [] ; 

% asc_slope               = [ -39.17 -39.43 ] , [ -17.58 -16.54 ] 

asc_slope               = atand( diff( [ -17.58 -16.54 ] ) / diff( [ -39.17 -39.43 ] ) 

) + 180 

des_slope               = atand( diff( [ -17.58 -16.54 ] ) / diff( [ -39.17 -39.43 ] ) 

) * -1 
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circum                  = 40075 

desired_rad             = 65 

ref_marker              = @( a , o ) 30 * 360 * [ -1 1 ] * 1 / ( circum * cosd( a ) ) + 

o 

 

set( 0 , ‘DefaultAxesXgrid’ , ‘on’ , ... 

         ‘DefaultAxesYgrid’ , ‘on’ , ... 

         ‘DefaultAxesZgrid’ , ‘on’ , ... 

         ‘DefaultLineLineSmoothing’ , ‘off’ , ... 

         ‘DefaultFigureUnits’ , ‘Normalized’ , ... 

         ‘DefaultFigurePosition’ , [ 0.1 0.1 0.8 0.8 ] ) 

 

 

% if ~exist( ‘bulk_tbs’ , ‘var’ ) 

%     in_file             = ‘W:\MWR\MWR_Beam_Pointing_Analysis\Brad’’s Code\Supersite 

Files\003\003.mat’  ; 

%     load( in_file ) 

%     disp( ‘Bulk_tbs loaded from default’ ) 

% end 

 

root_direc              = ‘W:\MWR\MWR_Beam_Pointing_Analysis\Brad’’s Code\Supersite 

Files’  ; 

folder_direc            = dir( fullfile( root_direc , ‘*.’ ) ) 

folder_direc( 1:2 )     = [] 

progressbar( ‘Orbits (out of 103)’ , ‘Channels (out of 3)’ , ‘Beams (out of 8)’ , 

‘Ascending Sites’ , ‘Descending Sites’ ) 

 

pb                      = struct( ‘orbit’ , 0 , ‘channel’ , 0 , ‘beam’ , 0 , ‘asc’ , 0 

, ‘des’ , 0 ) 

 

for i_orbit = 64 : 64 %numel( folder_direc ) 

subfolder           = folder_direc( i_orbit ).name                                          

; 

stem                = [ subfolder filesep subfolder ‘.mat’ ]                                

; 

in_file             = fullfile( root_direc , stem ) 

load( in_file ) 

clear s 
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[ p,f,~ ]               = fileparts( in_file ) 

channels                = { ‘RX37V’ , ‘RX37H’ , ‘RX23H’ }                                   

; 

beams                   = { ‘B1’ , ‘B2’ , ‘B3’ , ‘B4’ , ‘B5’ , ‘B6’ , ‘B7’ , ‘B8’ }         

; 

supersite_mat_beams     = { ‘b_1’ , ‘b_2’ , ‘b_3’ , ‘b_4’ , ‘b_5’ , ‘b_6’ , ‘b_7’ , 

‘b_8’ } ; 

offset_angles.asc       = [ linspace(  16 ,  60 , 8 ) ;                                     

... 

                            linspace(  16 ,  60 , 8 ) ;                                     

... 

                            linspace( -60 , -16 , 8 ) ] + asc_slope                         

; 

offset_angles.des       = [ linspace(  16 ,  60 , 8 ) ;                                     

... 

                            linspace(  16 ,  60 , 8 ) ;                                     

... 

                            linspace( -60 , -16 , 8 ) ] + des_slope                         

; 

orbit                   = f                                                                 

; 

 

try 

    close( coast.fig ) 

    disp( ‘Old Coast Figure Deleted.’ ) 

catch coast_figure_error 

    disp( ‘Unable to close coast figure.’ ) 

end 

 

coast.fig       = figure( ‘Position’ , [ 1.1000    0.1000    0.4000    0.6511 ] ) 

coast.ax        = axes 

coast.xlim      = [ -83.212295  , -80.317325    ] 

coast.ylim      = [  27.937851  ,  29.458046    ] 

ecc             = axes2ecc( 30 , 15 ) 

 

 

coast.plot      = plot( coast.ax , lon , lat , ‘.k’ ) 

set( coast.ax , ‘Clipping’ , ‘on’ ) 
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% xlim( coast.ax ,  ) 

% ylim( coast.ax ,  ) 

axis( coast.ax , [ coast.xlim coast.ylim ] ) 

axis square 

drawnow 

hold on 

run.plot        = plot( 30 , 30 , ‘ow’ ) 

run.poss        = plot( 30 , 30 , ‘LineStyle’ , ‘none’ , ‘Marker’ , ‘o’ , 

‘MarkerFaceColor’ , ‘k’ , ‘MarkerEdgeColor’ , [ 0 1 0 ] ) 

ref.line        = plot( 30 , 30 , ‘LineWidth’ , 1 , ‘Color’ , [ 0.8 0.8 0.8 ] ) 

 

 

for chan_num = 1 : numel( channels ) 

    for beam_num = 1 : numel( beams ) 

%         close all hidden 

        chan                    = channels{ chan_num }                                          

; 

        beam                    = beams{ beam_num }                                             

; 

        supersite_beam          = supersite_mat_beams{ beam_num }                               

; 

        slope_threshold         = 18                                                    

       ; 

        if chan == ‘RX37V’ 

            slope_threshold = 6 

        elseif chan == ‘RX37H’ 

            slope_threshold = 13    ; 

        end 

                                                                     ; 

        current_img             = images.( chan ).( beam )                                  

; 

        tb_median               = nanmedian( current_img )                                  

; 

        tb_diff                 = [ 0 diff( tb_median ) ]                                   

; 

        current_lats            = lats.( chan ).( beam )                                    

; 

        current_lons            = lons.( chan ).( beam )                                    
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; 

        lat_median              = nanmedian( current_lats )                                 

; 

        lon_median              = nanmedian( current_lons )                                 

; 

        smooth_lat              = medfilt2( lat_median , [ 1 30 ] )                         

; 

        smooth_lon              = medfilt2( lon_median , [ 1 30 ] )                         

; 

        signal_index            = 1 : numel( smooth_lat )                                   

; 

 

        %   Logical Test Values 

        peak                    = diff( [ 0 sign( [ diff( tb_diff ) 0 ] ) ] ) == -2         

; 

        peak                    = true( size( peak ) )                                      

; 

        trough                  = diff( [ 0 sign( diff( [ 0 tb_median ] ) ) ] ) == 2        

; 

        good_signal             = ( signal_index > 500 ) & ( signal_index < 3000 )          

; 

        good_lat                = ( smooth_lat > lat_min ) & ( smooth_lat < lat_max )       

; 

        asc                     = [ 0 ( diff( smooth_lat ) > 0 ) ]                          

; 

        des                     = [ 0 ( diff( smooth_lat ) < 0 ) ]                          

; 

        water_to_land_poss      = tb_diff > slope_threshold                                 

; 

 

        asc_des_poss            = good_signal & good_lat & water_to_land_poss & peak        

; 

        asc_des_num             = find( asc_des_poss )                                      

; 

        asc_poss                = asc_des_poss & asc                                        

; 

        asc_num                 = find( asc_poss )                                          

; 
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        des_poss                = asc_des_poss & des                                        

; 

        des_num                 = find( des_poss )                                          

; 

        logic_mat               = vertcat( peak , good_signal , good_lat , asc  , 

water_to_land_poss )  ; 

        figure( ‘Position’ , [ 0 0 1 0.5 ] ) 

        imagesc( logic_mat ) 

 

        h.fig   = figure( ‘Position’ , [ 0.6097    0.0433    0.3917    0.9567 ] ) 

        sp( 1 ) = subplot( 211 ) 

        p_1     = plotyy( signal_index , tb_diff , signal_index( good_lat & good_signal 

) , smooth_lat( good_lat & good_signal)  ) 

        tb_line = findobj( get( p_1( 1 ) , ‘Children’ ) , ‘Type’ , ‘Line’ ) 

        lat_lin = findobj( get( p_1( 2 ) , ‘Children’ ) , ‘Type’ , ‘Line’ ) 

        set( lat_lin , ‘Marker’ , ‘.’ , ‘LineStyle’ , ‘-’ , ‘MarkerFaceColor’ , ‘k’ ) 

        set( tb_line , ‘Marker’ , ‘x’ , ‘LineStyle’ , ‘-’ ) 

        set( get( p_1( 1 ) , ‘Children’ ) , ‘LineStyle’ , ‘.-’ , ‘MarkerFaceColor’ , 

‘k’ ) 

        hold on 

        plot( signal_index( asc_des_poss & good_signal ) , tb_diff( asc_des_poss & 

good_signal ) , ‘or’ ) 

        hold on 

        plot( [ 1 numel( signal_index ) ] , slope_threshold * [ 1 1 ] , ‘r’ ) 

        title( ‘Derivatives’ ) 

        grid on 

        marker( 1 )             = plot( 1 , 1 , ‘k+’ )                                          

; 

 

 

        sp( 3 ) = subplot( 212 )                                                                

; 

        plot( signal_index , tb_median , ‘.-g’ , ‘MarkerEdgeColor’ , ‘k’ ) 

        hold on 

        plot( signal_index( asc_des_poss ) , tb_median( asc_des_poss ) , ‘or’ ) 

        title( ‘Averaged Data’ ) 

        grid on 

        linkaxes( sp , ‘x’ ) 
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        drawnow 

        marker( 3 )             = plot( 1 , 1 , ‘k+’ )                                          

; 

        condition_string        = sprintf( ‘%s, %s’ , chan , beam ) 

        set( gcf , ‘NumberTitle’ , ‘off’ , ‘Name’ , condition_string ) 

 

        asc_supersites              = { [] }                                                    

; 

 

        set( run.plot , ‘XData’ , smooth_lon , ‘YData’ , smooth_lat ) 

        set( run.poss , ‘XData’ , smooth_lon( asc_des_poss ) , ‘YData’ , smooth_lat( 

asc_des_poss ) ) 

 

        set( coast.ax , ‘Color’ , [ 1 0.2 0.2 ] ) 

        set( run.poss , ‘MarkerEdgeColor’ , [ 0 1 0 ] ) 

        axis( coast.ax , ‘square’ ) 

 

%         pause 

        for i = 1 : numel( asc_num ) 

            title( coast.ax , [ condition_string ‘ Ascending’ ] ) 

 

            xlim( sp( 1 )  , asc_num( i ) + [ -15 15 ] ) 

            xlim( p_1( 2 ) , asc_num( i ) + [ -15 15 ] ) 

            current_latlon      = [ lat_median( asc_num( i ) ) lon_median( asc_num( i ) 

) ] ; 

            cc                  = num2cell( current_latlon )         ; 

            determine_box_limits 

            axis( coast.ax , [ lonlim latlim ] ) 

 

            set( marker( 1 ) , ‘XData’ , asc_num( i ) , ‘YData’ , tb_diff( asc_num( i ) 

) ) 

            set( marker( 2 ) , ‘XData’ , asc_num( i ) , ‘YData’ , smooth_lat( asc_num( 

i ) ) ) 

            set( marker( 3 ) , ‘XData’ , asc_num( i ) , ‘YData’ , tb_median( asc_num( i 

) ) ) 

            rot                 = offset_angles.asc( chan_num , beam_num ) * -1             

; 
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            [elat,elon]         = ellipse1(cc{ : },[30 ecc],rot,[],earthRadius(‘km’)); 

            set( ref.line , ‘XData’ , elon , ‘YData’ , elat ) 

            scene_radius_km     = 65                                                        

; 

            one_km_alt         = 864.3388                                             

; 

            total_alt           = 2 * scene_radius_km * one_km_alt                          

; 

            GEcamera( ge , [ current_latlon( 1 ) , current_latlon( 2 ) , 0 ] ,          

 ... 

                           [ total_alt 0 0 ] ) 

 

            [point]             = GEcamera(ge)                                              

; 

 

            clipboard( ‘copy’ , sprintf( ‘%0.8f , %0.8f’ , current_latlon ) ) 

            fprintf( ‘Current Lat: %0.2f, Current Lon: %0.2f\n’ , current_latlon ) 

            fprintf( ‘Orbit %d, channel %s, beam %s, \n’ , i_orbit , chan , beam , i ) 

            user_choice     = input( [ sprintf( ‘Ascending site %d of %d. Keep result? 

(y/n, x to exit) --> ‘ , i , numel( asc_num ) ) ] , ‘s’ )    ; 

            if lower( user_choice ) == ‘y’ 

                asc_supersites{ end+1 , 1 }     = current_latlon                            

; 

            end 

            if lower( user_choice ) == ‘x’ 

                return 

            end 

        pb.asc = i / numel( asc_num )                                                       

; 

 

        end 

        s.( supersite_beam ).( chan ).asc = [ asc_supersites{ : } ] 

 

        des_supersites              = { [] }                                                

; 

        set( coast.ax , ‘Color’ , [ 0.2 0.2 1 ] ) 

        set( run.poss , ‘MarkerEdgeColor’ , [ 1.0000    0.6445         0 ] ) 

        axis( coast.ax , ‘square’ ) 
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        for i = 1 : numel( des_num ) 

            title( coast.ax , [ condition_string ‘ Descending’ ] ) 

 

            xlim( sp( 1 )  ,  des_num( i ) + [ -15 15 ] ) 

            xlim( p_1( 2 ) ,  des_num( i ) + [ -15 15 ] ) 

            current_latlon  = [ lat_median( des_num( i ) ) lon_median( des_num( i ) ) ]     

; 

            cc              = num2cell( current_latlon )         ; 

            determine_box_limits 

%             set( ref.line , ‘XData’ , ref_marker( cc{ : } ) , ‘YData’ , [ 1 1 ] * 

current_latlon( 1 ) ) 

%             ylim( coast.ax , latlim ) 

%             xlim( coast.ax , lonlim ) 

            axis( coast.ax , [ lonlim latlim ] ) 

 

            set( marker( 1 ) , ‘XData’ , des_num( i ) , ‘YData’ , tb_diff( des_num( i ) 

) ) 

%             set( marker( 2 ) , ‘XData’ , des_num( i ) , ‘YData’ , smooth_lat( 

des_num( i ) ) ) 

            set( marker( 3 ) , ‘XData’ , des_num( i ) , ‘YData’ , tb_median( des_num( i 

) ) ) 

            rot                 = offset_angles.des( chan_num , beam_num ) * -1             

; 

 

            [elat,elon]         = ellipse1(cc{ : },[30 ecc],rot,[],earthRadius(‘km’)); 

            set( ref.line , ‘XData’ , elon , ‘YData’ , elat ) 

            scene_radius_km     = 65                                                       

; 

            one_km_alt         = 864.3388                                                  

; 

            total_alt           = 2 * scene_radius_km * one_km_alt                          

; 

            GEcamera( ge , [ current_latlon( 1 ) , current_latlon( 2 ) , 0 ] ,          

 ... 

                           [ total_alt 0 0 ] ) 

 

            [point]             = GEcamera(ge) 
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            clipboard( ‘copy’ , sprintf( ‘%0.8f , %0.8f’ , current_latlon ) ) 

            fprintf( ‘Current Lat: %0.2f, Current Lon: %0.2f\n’ , current_latlon ) 

            fprintf( ‘Orbit %d, channel %s, beam %s\n’ , i_orbit , chan , beam ) 

            user_choice     = input( [ sprintf( ‘Descending site %d of %d. Keep result? 

(y/n, x to exit) --> ‘ , i , numel( des_num ) ) ] , ‘s’ )   ; 

            if lower( user_choice ) == ‘y’ 

                des_supersites{ end+1 , 1 }     = current_latlon                            

; 

            end 

            if lower( user_choice ) == ‘x’ 

                return 

            end 

            pb.desc = i / numel( des_num )                                                  

; 

 

        end 

        try 

            close( h.fig ) 

        catch err 

        end 

        s.( supersite_beam ).( chan ).des = [ des_supersites{ : } ] 

        pb.beam = beam_num / numel( beams ) 

    end 

    pb.channel = chan_num / numel( channels ) 

    progressbar( pb.orbit , pb.channel , pb.beam , pb.asc , pb.des ) 

end 

save( [ p filesep ‘ss_’ f ] , ‘s’ ) 

pb.orbit    = i_orbit / numel( folder_direc )   ; 

 

end 
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Process_Beta3_files.m 

clc 

%   Grab a path of useful folders; machine-insensitive, designed to set up 

%   a file list on the lab machine or the server. 

add_necessary_folders 

 

direc.grids         = dir( folders.mas_grid )                                             

; 

direc.grids( 1:2 )  = []                                                                  

; 

direc.asc           = dir( fullfile( folders.mas_grid , direc.grids( 1 ).name , 

‘*.mat’ ) )   ; 

direc.des           = dir( fullfile( folders.mas_grid , direc.grids( 2 ).name , 

‘*.mat’ ) )   ; 

direc.beta3         = load( fullfile( folders.brads , ‘file_list.mat’ ) )                     

; 

addpath( genpath( ‘helpers’ ) ) 

options.convolve    = false                                                                   

; 

results             = {}                                                                      

; 

Begin Processing 

% We start by stripping the datenum from each grid file’s name. 

for i_grids = 1 : numel( direc.asc ) 

    grid_dates.asc( i_grids )   = datenum( direc.asc( i_grids ).name( 7:14 ), 

‘yyyymmdd’ )                  ; 

end 

 

for i_grids = 1 : numel( direc.des ) 

    grid_dates.des( i_grids )   = datenum( direc.des( i_grids ).name( 7:14 ), 

‘yyyymmdd’ )                  ; 

end 
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if ~exist( ‘loaded_grid_file’ , ‘var’ ) 

loaded_grid_file.asc        = ‘none’                                                                        

; 

loaded_grid_file.des        = ‘none’                                                                        

; 

end 

 

min_date_num                = str2num( ‘2012302’ )                                                          

; 

max_date_num                = str2num( ‘2013300’ )                                                          

; 

all_date_strings            = { direc.beta3.file_list.name }                                                

; 

all_date_nums               = cellfun( @( x ) str2double( x( 2:8 ) ) , 

all_date_strings )’                  ; 

good_date_indeces           = find( ( all_date_nums > min_date_num ) & ( 

all_date_nums < max_date_num ) )   ; 

coast_file                  = ( ‘coast_1km.mat’ )                                                           

; 

coast                       = load( coast_file )                                                            

; 

load( ‘ss_master.mat’ ) 

tic 

File Matching Section 

for i_beta = good_date_indeces’%( good_date_indeces >= 4015 )’ 

current_datafile            = fullfile( folders.beta3 , direc.beta3.file_list( 

i_beta ).name )           ; 

sprintf( ‘Current file: %s\n%0.2f%% complete\n.’ ,current_datafile , i_beta / numel( 

good_date_indeces * 100 ) ) 

current_date_string         = direc.beta3.file_list( i_beta ).name( 2:8 )                       

; 

[ asc_match , des_match ]   = match_grid_to_data_file( current_datafile , grid_dates 

)          ; 

closest_grid                = struct( ‘asc’ , fullfile( folders.mas_grid ,                                  

... 



80 

 

                                                        ‘Ascending’ ,                                       

... 

                                                        direc.asc( asc_match ).name ) 

,                     ... 

                                      ‘des’ , fullfile( folders.mas_grid ,                                  

... 

                                                        ‘Descending’ ,                                      

... 

                                                        direc.des( des_match ).name ) 

)                     ; 

 

if options.convolve 

    fprintf( ‘Grid file name:\t\t\t\t\t\t\t%s\n\n’ , direc.asc( asc_match ).name ) 

    if ~strcmp( loaded_grid_file.asc , closest_grid.asc ) 

        load( closest_grid.asc )                                ; 

        loaded_grid_file.asc = closest_grid.asc                 ; 

        disp( ‘New ascending grid file loaded.’ ) 

    else 

        disp( ‘Existing ascending grid file used.’ ) 

    end 

 

    if ~strcmp( loaded_grid_file.des , closest_grid.des ) 

        load( closest_grid.des )                                ; 

        loaded_grid_file.des = closest_grid.des                 ; 

        disp( ‘New descending grid file loaded.’ ) 

    else 

        disp( ‘Existing descending grid file used.’ ) 

    end 

end 

 

%   Load the current data in .mat format. New variable is ‘data.’ 

disp( current_datafile ) 

load( current_datafile ) 

data.filename       = current_datafile                             ; 
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Actual Processing 

disp( [ ‘i_Beta = ‘ num2str( i_beta ) ] ) 

r_new               = find_crossing( data , coast , ss_master )    ; 

results             = vertcat( results , r_new )                    ; 

drawnow 

 

% ellipse_gen( center , ellipse_major_km , ellipse_minor_km , num_ellipses , 

offset_angle , plot_points , num_points ) 

end 

toc 
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Find_crossing.m 

function results = find_crossing( data , c , ss_master ) 

if nargin == 0 

    load( ‘test_state.mat’ ) 

end 

beams                   = { ‘b_1’ , ‘b_2’ , ‘b_3’ , ‘b_4’ , ‘b_5’ , ‘b_6’ , ‘b_7’ , 

‘b_8’ }’    ; 

beams_data              = { ‘B1’ , ‘B2’ , ‘B3’ , ‘B4’ , ‘B5’ , ‘B6’ , ‘B7’ , ‘B8’ }’    

; 

pols                    = { ‘RX23H’ , ‘RX37V’ , ‘RX37H’ }’                              

; 

ascdesc                 = { ‘asc’ , ‘des’ }                                             

; 

radius                  = 100                                                           

; 

min_points              = 7                                                             

; 

asc_sign                = struct( ‘asc’ , 1 , ‘des’ , -1 )                              

; 

results                 = { }                                                           

; 

 

for i_beam = 1 : 8 

    beam                = beams{ i_beam }                               ; 

    B                   = beams_data{ i_beam }                          ; 

    for i_pol = 1 : 3 

        pol             = pols{ i_pol }                                 ; 

 

        for i_ascdesc = 1 : 2 

            ad          = ascdesc{ i_ascdesc }                          ; 

 

            if isfield( ss_master.( beam ) , pol ) 

                if ~isempty( ss_master.( beam ).( pol ).( ad ) ) 

                    for i_site = 1 : size( ss_master.( beam ).( pol ).( ad ) , 1 ) 

                        this_site     = ss_master.( beam ).( pol ).( ad )( i_site , 

: ) ; 
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                        [ n, w, s, e ]  = calc_geo_square( this_site( 1 ) , 

this_site( 2 ) , radius )   ; 

                        d               = data.( pol ).( B )                         

 ; 

                        d.asc         = sign( [ 0 ; diff( d.Lat ) ] ) > 0      

 ; 

                        d.des         = sign( [ 0 ; diff( d.Lat ) ] ) <= 0           

 ;                                                        

                        d.good          = ( d.Lat > s ) & ( d.Lat < n ) &          

 ... 

                                          ( d.Lon > w ) & ( d.Lon < e )          

 ; 

                        if ~logical( i_ascdesc - 1 ) % ascending 

                            all_good    = d.good & d.asc                        

 ; 

                        else % descending 

                            all_good    = d.good & d.des                          

 ; 

                        end 

 

                        if sum( all_good ) >= min_points 

                            display_name = data.filename( 1:28 )                                        

; 

                            disp( fprintf( ‘Processing %s at %0.2f Lat %0.2f Lon’ , 

display_name , this_site ) ) 

                            current_pts = struct( ‘Lat’     , d.Lat( all_good ) ,   

... 

                                                  ‘Lon’     , d.Lon( all_good ) ,   

... 

                                                  ‘Tb’      , d.Tb(  all_good ) ,   

... 

                                                  ‘az’      , d.az(  all_good ) ,   

... 

                                                  ‘fn’      , data.filename     ,   

... 

                                                  ‘beam’    , beam              ,   

... 

                                                  ‘pol’     , pol               ,   
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... 

                                                  ‘ad’      , ad                ,   

... 

                                                  ‘ss’      , this_site         ,   

... 

                                                  ‘coast’   , []                ,   

... 

                                                  ‘cross’   , []                )   ; 

%                             save( ‘test_state’ ) 

                            [ lat_fraction , mu ]   = project_max( current_pts )                               

; 

                            if isnan( lat_fraction ) 

                                disp( ‘Points invalid. Continuing.’ ) 

                                continue 

                            end 

 

                            crossing_point.Lat      = interp1( current_pts.Lat , 

current_pts.Lat , mu )        ; 

                            crossing_point.Lon      = interp1( current_pts.Lat , 

current_pts.Lon , mu )         ; 

 

                            c.good                  = ( c.lat > s ) & ( c.lat < n ) &                        

 ... 

                                                      ( c.lon > w ) & ( c.lon < e )                           

 ; 

                            if ~any( c.good ) 

                                disp( ‘No coastal points.’ ) 

                                continue 

                            end 

                            c_raw               = [ c.lat( c.good ) c.lon( c.good ) ]                           

; 

                            c_mat               = [ ( c.lat( c.good )-

crossing_point.Lat ) * cosd( crossing_point.Lat )             ... 

                                                      c.lon( c.good )-

crossing_point.Lon ]’                                         ; 

                            cross_mat           = repmat( [ crossing_point.Lat 

crossing_point.Lon ] ,                               ... 

                                                            size( c.lat( c.good ) , 1 



85 

 

) , []  )                                     ; 

                            distances           = distance( cross_mat , c_raw ,                     

... 

                                                            referenceEllipsoid( 

‘earth’ ) )         ; 

 

                            min_ind             = distances == min( distances )         

; 

                            km_dist             = distances( min_ind )                  

; 

                            closest_coast       = c_raw( min_ind , : )                  

; 

                            current_pts.coast   = struct( ‘Lat’ , closest_coast( 1 ) 

,  ... 

                                                          ‘Lon’ , closest_coast( 2 ) 

)  ; 

                            current_pts.cross   = crossing_point                        

; 

 

%                             km_dist             = angle_dist / 360 * 2 * pi * 

earthRadius ; 

                            error_sign          = asc_sign.( ad )                         

; 

                            current_pts.error   = sign( crossing_point.Lat - 

closest_coast( 1 ) ) * error_sign * km_dist / 1000 ; 

                            %   NEGATIVE ERROR SIGN MEANS CROSSING 

                            %   CALCULATED BEFORE COAST 

                            results{ end+1, 1 } = current_pts                           

; 

                        else 

                            continue 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 
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Project_max.m 

function [ lat_fraction , mu ] = project_max( current_pts ) 

if nargin == 0 

        plot_pts = true         ; 

    else 

        plot_pts = false        ; 

    end 

 

    close all 

    mu                  = nan                                                                   

; 

    current_max         = max( current_pts.Tb )                                                 

; 

    current_min         = min( current_pts.Tb )                                                 

; 

    current_range       = current_max - current_min                                             

; 

    if current_range < 40 

        lat_fraction = nan                                                                      

; 

        return 

    end 

    current_pts.Tb      = ( current_pts.Tb - current_min ) / current_range                      

; 

    lat_diffs           = diff( current_pts.Lat )                                               

; 

    input_std           = std( current_pts.Tb )                                                 

; 

    avg_lat_diff        = mean( lat_diffs )                                                     

; 

    diff_points         = current_pts.Lat  - avg_lat_diff / 2                                   

; 

    tb_diffs            = diff( current_pts.Tb )                                                

; 

    max_loc             = find( tb_diffs == max( tb_diffs ) , 1 , ‘first’ )                 

 ; 
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    eval_range          = max_loc-1 : max_loc+1                                                 

; 

    if ( min( eval_range ) < 1 ) || ( max( eval_range ) > numel( tb_diffs ) ) 

        lat_fraction = nan                                                                      

; 

        return 

    end 

    max_eval            = diff( tb_diffs( eval_range ) )                                        

; 

    eval_quotient       = max( abs( max_eval ) ) / min( abs( max_eval ) )                       

; 

    if eval_quotient > 1.5 

        if diff( abs( max_eval ) ) < 0 

            center_point = mean( diff_points( max_loc+1 : ( max_loc+2 ) ) )                     

; 

        else 

            center_point = mean( diff_points( max_loc   : ( max_loc+1 ) ) )                     

; 

        end 

    else 

        center_point = diff_points( max_loc+1 )                                                 

; 

    end 

    fit_bounds          = center_point + 3.8 * avg_lat_diff * [ -1 1 ]                          

; 

    fit_inds            = diff_points > min( fit_bounds ) & diff_points < max( 

fit_bounds )     ; 

    fit_inds( 1 )       = false                                                                 

; 

    fit_x               = diff_points( fit_inds )                                               

; 

    fit_ind_shift       = find( fit_inds ) - 1                                                  

; 

    fit_y               = tb_diffs( fit_ind_shift )                                             

; 

    fit_max             = max( tb_diffs )                                                       

; 

    [ s , mu , A ]      = mygaussfit( fit_x , fit_y )                                           
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; 

    if ~isreal( s ) 

        lat_fraction = nan; 

        return 

    end 

    max_tb_point        = mu                                                                    

; 

 fit_curve           = A / sqrt( 2*pi*s ) * exp( -( ( diff_points - mu ) / ( 

2*s ) ) .^2 )   ; 

    parabola            = polyfit( fit_x , fit_y , 2 )                                          

; 

    parab_vertex        = -parabola( 2 ) / ( 2*parabola( 1 ) )                                  

; 

    parab_val           = polyval( parabola , diff_points )                                     

; 

    lat_fraction        = ( mu - current_pts.Lat( 1 ) ) /                                       

... 

                          ( current_pts.Lat( end ) - current_pts.Lat( 1 ) )                     

; 

    if abs( lat_fraction ) > 1 | ( lat_fraction < 0 ) 

        plot_pts = true 

    end 

 

    error_g             = sum( ( [ 0 ; tb_diffs ] - fit_curve ) .^2 )                           

; 

    if plot_pts 

    sp( 1 )             = subplot( 211 ) 

    plot( current_pts.Lat , current_pts.Tb , ‘.-’ , ‘LineSmoothing’ , ‘on’ ) 

    grid on 

    hold on 

    plot( max_tb_point * [ 1 1 ] , [ min( current_pts.Tb ) max( current_pts.Tb ) ] , 

‘r’ ) 

    legend( { ‘T_Bs’ , ‘Max’ } , ‘Location’ , ‘SouthEast’) 

    title( sprintf( ‘%s, \\sigma_{input} = %0.2g’ , current_pts.fn , std( 

current_pts.Tb ) ) ) 

 

    sp( 2 )             = subplot( 212 ) 

    plot( diff_points ,[ 0 ; tb_diffs ] , ‘.-’ , diff_points , fit_curve , ‘.-’ , 
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diff_points , parab_val , ‘.-’ , ‘LineSmoothing’ , ‘on’ ) 

    ylim( [ min( tb_diffs ) max( tb_diffs ) ] ) 

    grid on 

    legend( { ‘Input Diff’ , ‘Gaussian Fit’ , ‘Parabolic Fit’ } , ‘Location’ , 

‘NorthEast’ ) 

    linkaxes( sp , ‘x’ ) 

    title( sprintf( ‘Error of Gaussian = %0.2g’ , error_g ) ) 

    drawnow 

    end 

    if abs( lat_fraction ) > 1 || ( lat_fraction < 0 ) 

        lat_fraction = nan; 

    end 

end 
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APPENDIX C: WINDSAT CROSS-VALIDATION 
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The geolocation analysis was performed using WindSat 𝑇𝐵 data for the period of 

October 29th-December 9th, 2012.  The WindSat was selected because the wide swath 

provides frequent overlap with MWR observations within a time window of ±45 minutes. 

The 2012 WindSat sensor data records (SDR), obtained from the United States Naval 

Research Laboratory (NRL) (http://www.nrl.navy.mil/WindSat/), were used to produce 

brightness temperature images of the MWR supersites for 23.8 GHz-H-pol; 37 GHz V- & H-

pol T_B’s gridded on a 0.125°Lat/Lng earth-grid.  

When evaluating separate tracts of the same geographical area (e.g., Southern 

Australia) within any week of time, 𝑇𝐵 differences between 15-20°K were observed on a pixel 

by pixel basis. Since it is not possible to have simultaneous WindSat data for every pass, it 

was decided to use weekly averages. Further, to minimize 𝑇𝐵 changes associated with the 

diurnal cycle, the WindSat data were separated into ascending and descending tracts to 

correspond to the individual collocations being considered.  

It was important that the selected supersites have contiguous gridded brightness 

temperatures within the antenna pattern surface footprint; therefore to fill missing pixels 

average brightness temperature resulting from values of the surrounding cells were 

inserted.   

Two other significant characteristic played an important factor in a supersite 

selection; first, no large bodies of water on land near the coast and secondly, no islands or 

land masses around the coast close to land were permitted.  These two cases would bring 

anomalous temperature issues.  In a pure sense, we were trying to measure a water/land 

boundary crossing to validate satellite antenna boresight geolocation. 

http://www.nrl.navy.mil/WindSat/
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A sample site is shown on the southern coast of Australia is shown in Figure 39. Figure 

40 and Figure 41 are images displaying the same boxed-in supersite in South Australia, 

between latitudes [-31.16, -32.96] & longitudes [126.31, 128.44].  The supersite figures are 

a snapshot of a 7 day mean brightness temperature of an ascending orbit, of a 37 GHz V-pol. 

Channel.  Figure 40‘s image denotes 5 locations which previously contained nan (not a 

number) values, originally gridded from SDR files, with the modification that a paint 

program was used to remove/replace the nans with average temperature values of the 

surrounding cells.  Figure 41 shows the antenna pattern overlay used to provide support of 

the geolocation scheme mentioned above. 

 
Figure 39: Southern Australia, with a box indicating a sample supersite location. 
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Figure 40: South Australia, gridded raw data, touched 

 

 
Figure 41: South Australia, gridded with antenna pattern 
superimposed. 

 

These gridded TBs are used as the map of apparent brightness temperatures (TAP) for 

comparison with measured TBs via numerical convolution (see 3.2: MWR Two-Dimensional 
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Convolution, page 21); this has been done in the present work to validate that the maximum 

slope point of a series of convolved  TBs is collocated with that of measured 𝑇𝐵s. As a proof 

of principal, this was done prior to full automation on a large series of land/water crossings, 

and the results are shown in Figure 42 and Figure 43 on the following page. 
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Figure 42: Comparison of measured vs. convolved TBs, 36.5GHz v-pol 

 

 

 
Figure 43: Comparison of measured vs. convolved TBs, 36.5GHz h-pol 
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