
JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 1-1: Creating a JavaScript-enabled page

In this lab, you will create your first JavaScript page, which will introduce two JavaScript
objects using a method of one and two properties of the other. The first object is the
document object and will use its write method. The second object is the navigator
object and will use its appName and appVersion properties.

1. Editor: Open the lab1-1.htm file from the Lesson 1 folder of the Student_Files
directory. Enter the code indicated in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 1-1</title>
</head>

<body>
<h3>CIW JavaScript Specialist</h3>
<hr />

<script type="text/javascript">
<!--

document.write(navigator.appName);
document.write("<p>");
document.write(navigator.appVersion);
document.write("</p>");

//-->
</script>

</body>
</html>

2. Editor: Save lab1-1.htm.

3. Browser: Open the lab1-1.htm file in your browser. Your screen should resemble
Figure 1-2, depending on the browser you use (the figure shows the file displayed in
Internet Explorer 8). You can see that this simple script determines and displays the
type and version of browser used to display it.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 1-2: File lab1-1.htm displayed in Internet Explorer v8 browser

4. Browser: Now launch a different browser, and use it to open the lab1-1.htm file.
Your screen may resemble Figure 1-3, depending on the browser you use (the figure
shows the file displayed in Mozilla Firefox). You can see that this simple script
determines and displays the type and version of browser used to display it.

Figure 1-3: File lab1-1.htm displayed in Mozilla Firefox browser

5. Browser: Study the display in the browser. As you can see, differences exist in the
format that each browser uses for the output of the JavaScript statements. This
example indicates the differences in implementing JavaScript from browser to
browser.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

6. Editor: Review the code you wrote in the lab1-1.htm file. In this lab you used a
document.write() statement. The document object's write() method is used to
output data to the X/HTML stream. You also used the navigator object's appName
and appVersion properties. The appName property returns a string value indicating
the name of the client browser. The appVersion property returns a string value
indicating the version number of the client browser, as well as the client's platform.

Notice that in the document.write() statements, the code navigator.appName and
navigator.appVersion was not typed inside quotation marks, whereas the X/HTML
<p> tag was inside quotation marks. The two lines of code using the navigator object
are evaluated text. In other words, the JavaScript interpreter dynamically supplies the
appropriate text when the script is executed. Therefore, that text was not inside quotation
marks. The literal <p> tag is static text. Its value is known before the script runs, so it is
placed inside quotation marks.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 2-1: Using the JavaScript alert() method

In this lab, you will use the JavaScript alert() method to display a message to the user.

1. Editor: Open the lab2-1.htm file from the Lesson 2 folder of the Student_Files
directory.

2. Editor: Locate the <script type="text/javascript"></script> block in the
<head> section of the document. Within the block, add an alert() method with the
message "Good Morning!" as the text within the alert box.

3. Editor: Save lab2-1.htm.

4. Browser: Open lab2-1.htm. You should see a dialog box that resembles Figure 2-1. If
you do not, verify that the source code you entered is correct.

Figure 2-1: Alert message

5. Browser: After you click OK, your screen should resemble Figure 2-2.

Figure 2-2: File lab2-1.htm displayed following JavaScript statement

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 2-2: Using the JavaScript prompt() method

In this lab, you will use the JavaScript prompt() method with concatenation to request
and capture user input.

1. Editor: Open lab2-2.htm from the Lesson 2 folder of the Student_Files directory.

2. Editor: Locate the alert() method that has been defined for you. Modify the source
code by adding a prompt() method that asks for the user's name. Concatenate the
user's input with the existing text and add a closing period after the user input.

3. Editor: Save lab2-2.htm.

4. Browser: Open lab2-2.htm. When the page loads, you should see a prompt dialog
box that resembles Figure 2-3. If not, verify that the source code you entered is
correct.

Figure 2-3: User prompt dialog box

5. Browser: Enter your name in the text field, and then click OK. Your screen should
display a message that resembles the one shown in Figure 2-4.

Figure 2-4: Alert message box

6. Browser: When you click OK, your screen should resemble Figure 2-2 (from the
previous lab).

7. Browser: Reload the page to run the script again. This time, do not enter any text in
the prompt, then click OK. The alert will display the message "Good morning, ." This
is evidence of an empty string, which is a string that contains no characters.

8. Browser: Reload the page again. This time, click Cancel (with or without first
entering any text). The alert will display the message "Good morning, null." When no
data is entered by the user, the prompt() method returns a null value, which is
converted to the string "null" in this return display. Be sure to consider how the
user's actions might affect any JavaScript methods you use that incorporate user
input.

In this lab, the prompt() method is processed first and the user's input is then
concatenated into the expression. In other words, the prompt() method will take
precedence over the alert() method in a JavaScript statement. In fact, JavaScript
statements always execute from the inside out.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 2-3: Using the JavaScript confirm() method

In this lab, you will use the confirm() method to elicit a true or false return value from
the user.

1. Editor: Open lab2-3.htm from the Lesson 2 folder of the Student_Files directory.

2. Editor: Locate the alert() method that has been defined for you. Modify the code to
use the return value of a confirm() dialog box as the text for an alert() dialog box.
In other words, concatenate the result of a confirm() method into an alert()
method, just as you previously concatenated the result of a prompt() method into an
alert(). The argument for the confirm() method should read, "Do you want to
proceed?"

3. Editor: Save lab2-3.htm.

4. Browser: Open lab2-3.htm. When the page loads, you should see a confirm dialog
box that resembles Figure 2-5. If not, verify that the source code you entered is
correct.

Figure 2-5: Confirm dialog box

5. Browser: Click OK. Your screen should resemble Figure 2-6.

Figure 2-6: Result of confirm() method after clicking OK

6. Browser: Reload lab2-3.htm. Click Cancel. Your screen should resemble Figure 2-7.

Figure 2-7: Result of confirm() method after clicking Cancel

Be aware that you can use the true or false result of the confirm() method to initiate
further action. For example, a return value of true could launch another pop-up with
additional information or redirect users to a new page on the site.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 2-4: Using the JavaScript document.write() method

In this lab, you will use the document.write() method to customize a page for the user.

1. Editor: Open lab2-4.htm from the Lesson 2 folder of the Student_Files directory.

2. Editor: Locate the prompt() method that has been defined for you. Modify the
source code to use a document.write() statement. Concatenate the results of the
prompt() method into the document.write() expression. Designate the output of
the document.write() as an <h4> level greeting that displays the following:

Welcome, user's name.

The text "user's name" will be the return value from the prompt() method. Be sure to end
with a period and close the <h4> tag after inserting the user's name.

3. Editor: Save lab2-4.htm.

4. Browser: Open lab2-4.htm. You should see a dialog box that resembles Figure 2-8.

Figure 2-8: User prompt

5. Browser: Type your name in the dialog box, and then click OK. Your screen should
resemble Figure 2-9.

Figure 2-9: Page for lab2-4.htm with customized welcome message

6. Edit the initial prompt to contain a message within the text entry field. Place the text
string you want inside of the now-empty quotation marks. For example, you could
insert the following text shown in bold:

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

prompt("What is your name?","Thank you
for entering your name here");

This addition would alter the initial alert box as shown in Figure 2-10.

Figure 2-10: Customizing initial prompt

Note that in this lab, you were able to include an XHTML heading tag as part of the text
that was written to the screen. X/HTML can be freely interspersed with text when using
the document.write() method. Note also that the prompt() method takes processing
precedence over the document.write() method when both are used in the same
expression.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 2-5: Storing user data in a JavaScript variable

In this lab, you will store the user's name in a variable so you can use it as needed.

1. Editor: Open lab2-5.htm from the Lesson 2 folder of the Student_Files directory.

2. Editor: Locate the prompt() method that has been defined for you. Modify the
source code to add a variable named userName. Assign the result of the prompt()
method as the value for userName.

3. Editor: Concatenate the userName variable into the alert() and document.write()
expressions that have been provided for you. Make sure to concatenate closing
periods in both the alert() and document.write() statements.

4. Editor: Save lab2-5.htm.

5. Browser: Open lab2-5.htm. Compare the prompt dialog box displayed in your
browser with Figure 2-11. They should be similar.

Figure 2-11: User prompt dialog box

6. Browser: Enter your name in the text field and click OK. Your screen should display
a message similar to Figure 2-12.

Figure 2-12: Alert message box

7. Browser: Click OK again, and your screen should resemble Figure 2-13.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 2-13: Page for lab2-5.htm with welcome message recalling user's name

Tech Note: If you try to edit an X/HTML file with an alert message present in the browser,
you may not be able to save your file until you acknowledge the message by clicking the
OK button. If you do not acknowledge the alert, you might receive a "file sharing" violation
from your operating system.

In this lab, you declared a variable called userName. In that variable, you stored the
result of the prompt() command. The = character was used as the assignment operator.

You then concatenated the phrase "Welcome, " with the userName variable using the +
operator, and displayed the result in an alert box. After the user acknowledged the first
alert, you generated a document.write() statement, with text before and after the
variable userName.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 2-6: Assigning and adding variables in JavaScript

In this lab, you will assign variables and use the addition operator to add them together.

1. Editor: Open the lab2-6.htm file from the Lesson 2 folder of the Student_Files
directory.

2. Editor: Add source code inside the <script type="text/javascript"></script>
block. Create two variables named x and y. Assign the numerical value of 4 to the
first variable and 9 to the second variable.

3. Editor: Create a third variable named z. Assign to z the result of adding together x
and y. Display the variable z in an alert() dialog box.

4. Editor: Save lab2-6.htm.

5. Browser: Open lab2-6.htm. Your screen should immediately display an alert box, as
shown in Figure 2-14.

Figure 2-14: Result of JavaScript addition: z=13

6. Editor: Immediately after the alert(z) line, add the following source code:

alert("4 + 9 = " + x + y);

7. Editor: Save lab2-6.htm.

8. Browser: Reload lab2-6.htm. Your screen should display the alert box showing 13,
as seen in Figure 2-14. When you click OK, you should then see another alert box as
shown in Figure 2-15.

Figure 2-15: Concatenation, not sum

This alert shows that the + symbol was interpreted as an operator for concatenation.
Because the values were concatenated, the script returned a result of 49. Note that
this behavior is caused by the fact that the alert() method normally takes a string
value as its argument. So the JavaScript interpreter treated the values as strings
instead of numerical values.

It is common for the JavaScript interpreter to mistake numbers for characters and
treat them accordingly. Thus, the interpreter is not recognizing x and y as numbers,
but as characters. You would expect this alert to show "13" (x + y), but the script sees
"4 + 9" as a string. Therefore, instead of performing addition, it performs
concatenation, (working left to right, following mathematical precedence), for a result
of 49, instead of adding them for a result of 13.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Tech Note: Mathematical precedence dictates the order in which operations will be
worked: First, the script will work within the parentheses, doing multiplication and
division first, then addition and subtraction next. Then the script will go outside the
parentheses and work multiplication/division first, then work left to right doing
addition and subtraction. This fact is important to know when you are creating complex
formulas using JavaScript.

9. Editor: Modify the source code as indicated in bold, then save the file:

alert("4 + 9 = " + (x + y));

By adding parentheses around the x + y section of the expression, you are asking
JavaScript to first calculate (x + y) and then attach it to the preceding text string. So
the two integers are added before interacting with the string.

10. Browser: Reload lab2-5.htm. Now, as you click OK, you should see the alert boxes
shown in Figure 2-14 and Figure 2-16, in sequence.

Note: Depending on the browser used, you may seen another alert box appear in
between these two that says, "Explicit declaration: 4 + 9 = 13."

Figure 2-16: Correct sum is indicated

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 2-7: Using the JavaScript onunload event handler and inline
scripting

In this lab, you will obtain the user's name as he or she loads the page, then use this
data to personalize the user's visit in multiple ways, even as the page is unloaded. You
will use both inline scripting and the onunload event handler.

1. Editor: Open lab2-7.htm from the Lesson 2 folder of the Student_Files directory.

2. Editor: Enter source code in the <body> tag. Add an onunload event handler that
calls an alert() box. The text should read "Goodbye, " with the userName variable
concatenated into the string, then the text "Hurry back!"

3. Editor: Save lab2-7.htm.

4. Browser: Open lab2-7.htm. You should see a series of dialog and alert boxes. Enter
your name in the prompt dialog box and click OK as shown in Figure 2-17.

Figure 2-17: Prompt dialog box

5. Browser: The greeting alert box will appear, as shown in Figure 2-18. Click OK.

Figure 2-18: Alert box

6. Browser: The lab2-7.htm page will appear with a personalized greeting, as shown in
Figure 2-19.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 2-19: Page for lab 2-7.htm with welcome message

7. Browser: Click the Back button or the Home button from your browser's tool bar to
navigate to a different page. You should see the alert box shown in Figure 2-20.

Figure 2-20: Goodbye alert box

8. Browser: After clicking OK on the alert dialog box, your screen will show the page to
which you navigated.

This lab provided an opportunity to add inline scripting using the onunload event
handler. You will learn more about inline scripting, events and event handlers in later
lessons.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 3-1: Creating a user-defined function in JavaScript

In this lab, you will create a simple function that displays an alert dialog box. The
function will be invoked by the onload event handler.

1. Editor: Open lab3-1.htm from the Lesson 3 folder of the Student_Files directory.

2. Editor: Create a function named myFunction() in the <script> block of the
document's <head> section. After entering the function keyword and the name of
the function, be sure to properly open the function definition with a curly brace.

3. Editor: Inside the function, create an alert dialog box. For the alert's message, use:
The HTML page has loaded.

4. Editor: You will now add an onload event handler to the document's <body> tag.
The onload event handler will be used to call the function that you just created.
Locate the <body> tag near the top of the document. Modify the <body> tag as
indicated in bold:

<body onload="myFunction();">

5. Editor: Save lab3-1.htm.

6. Browser: Open lab3-1.htm. Your screen should resemble Figure 3-1.

Figure 3-1: Page for lab3-1.htm with alert

7. Browser: After clicking OK, your screen should render the CIW JavaScript Specialist
XHTML page seen behind the alert box in the preceding figure.

In this lab, you successfully created a simple function that displayed an alert dialog box.
In addition, you launched your function using the onload event handler and inline
scripting.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 3-2: Using functions, arguments and return values in JavaScript

In this lab, you will create a simple function, pass arguments to that function when it is
called, and return a value to the calling statement.

1. Editor: Open lab3-2.htm from the Lesson 3 folder of the Student_Files directory.

2. Editor: A simple function has been created for you. The lab3-2.htm file contains a
form button. Add an onclick event handler to the <input> tag. Use this event
handler to invoke myFunction().

3. Editor: Save lab3-2.htm.

4. Browser: Open lab3-2.htm. Your screen should resemble Figure 3-2.

Figure 3-2: Page for lab3-2.htm

5. Browser: Click Call Function. You should see an alert as shown in Figure 3-3.

Figure 3-3: Result of function call

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

6. Browser: Click OK.

7. Editor: Open lab3-2a.htm. You will now add an argument to a function call, then
use that argument in the function. Locate the <input> tag in the XHTML form. Add
this string:

"a string of text"

in the parentheses after the function name in the onclick expression. You are
passing literal text to the function, so be sure to include the quotation marks
around the string.

8. Editor: Add an argument named arg1 in the parentheses after the function name.
Concatenate arg1 into the argument of the alert() method. Save lab3-2a.htm.

9. Browser: Open lab3-2a.htm. Your screen should resemble Figure 3-2. Click Call
Function. You should see an alert as shown in Figure 3-4.

Figure 3-4: Result of function call

10. Browser: Click OK.

11. Editor: Open lab3-2b.htm. Add a return statement to myFunction() after the
alert() statement. Add this text:

 "myFunction() return value"

after the return keyword.

12. Editor: In order to see the return value from the function, you will add an alert()
method to the calling statement. Locate the onclick event handler defined in the
<input> tag near the bottom of the file. Wrap an alert() method around the call to
myFunction(). Save lab3-2b.htm.

13. Browser: Open lab3-2b.htm. Your screen should resemble Figure 3-2. Click Call
Function. You should see an alert as shown in Figure 3-4. Click OK. You should
then see an alert as shown in Figure 3-5.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 3-5: Return value from myFunction()

In this lab, you created a function that received an argument. When you created the
calling statement, you passed a value to the function as an argument. You then returned
a value to the calling statement. When a value is passed into a function and changed, the
value of the original data is not changed. In programming, this mode is known as pass by
value. The exception to this rule is if an object reference is passed as an argument to a
function. JavaScript uses pass by reference for object arguments. For more information
about pass by reference, see the related appendix.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 3-3: Calling a function from within another function in JavaScript

In this lab, you will use one function to call another. It will also pass a value to that
function, and then return a value to the calling statement.

1. Editor: Open lab3-3.htm from the Lesson 3 folder of the Student_Files directory.

2. Editor: Examine the following source code:

<script type="text/javascript"><!--

var numCorrect = 0;

function takeTest() {
var response = "";
var points = 0;

var q1 = "What company developed JavaScript?";
var a1 = "NETSCAPE";

var q2 = "Using JavaScript operator precedence,\n what is the
result of the following expression? 2 + 4 * 6";
var a2 = 26;

var q3 = "With what object-oriented programming language\n is JavaScript often
compared and confused?";
var a3 = "JAVA";

response = prompt(q1,"");
if (response) points= runningTotal((response.toUpperCase() == a1) ? 1 : 0);
alert(points);

response = prompt(q2,"");
if(response) points= runningTotal((response == a2) ? 1 : 0);
alert(points);

response = prompt(q3,"");
if (response) points=runningTotal((response.toUpperCase() == a3) ? 1 : 0);
alert("You answered a total of " + points + " correctly.");

numCorrect = 0;
points = 0;

}

function runningTotal(i) {
 numCorrect += i;
 return numCorrect;
}

// -->
</script>

3. Editor: Locate the <form> tag near the bottom of the document. Examine the
<input> tag. Note especially the code indicated in bold:

<form>
<input type="button" value="take quiz" onclick="takeTest();">
</form>

4. Editor: Close lab3-3.htm.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

5. Browser: Open lab3-3.htm. Your screen should resemble Figure 3-6.

Figure 3-6: Page for lab3-3.htm

6. Browser: Click the Take Quiz button. Respond to each of the prompts. Enter both
correct and incorrect answers to check the logic of the quiz.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 4-1: Using if statements

In this lab, you will create an if statement. The if statement will test an integer for a
particular range of values. An alert dialog box will provide pertinent information if the
integer falls within this range.

1. Editor: Open lab4-1.htm from the Lesson 4 folder of the Student_Files directory.

2. Editor: A function named checkgrade() has been started for you. A variable named
myGrade is assigned an integer value received from a select object in an XHTML
form.

3. Editor: Following the myGrade initialization statement, create an if statement. As
the condition for the if statement, test the myGrade variable for a value greater than
or equal to 91. If the value is greater than or equal to 91, output an alert that informs
the user that his or her grade is an A.

4. Editor: Save lab4-1.htm.

5. Browser: Open lab4-1.htm. Your screen should resemble Figure 4-1.

Figure 4-1: Page for lab4-1.htm

6. Browser: Select a numerical grade value of 91 or greater from the drop-down menu.
You should see an alert resembling Figure 4-2.

Figure 4-2: Alert dialog box

7. Browser: Click OK to close the alert.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

8. Editor: Add an else if clause to the if statement. As the condition for the else if
clause, test the myGrade variable for a value greater than or equal to 81 and less
than or equal to 90. Hint: Use the logical AND operator (&&) to perform this test. If the
myGrade variable falls within this range, output an alert dialog box informing the
user that his or her grade is a B.

9. Editor: Save lab4-1.htm.

10. Browser: Refresh lab4-1.htm. Select a numerical grade value between 81 and 90
from the drop-down menu. You should see an alert resembling Figure 4-3.

Figure 4-3: Alert dialog box

11. Browser: Click OK to close the alert.

12. Editor: You could continue adding else if clauses to test, then map all possible
ranges of integer values to a letter grade. However, for now, add an else clause to
the if statement. The else clause will simply output an alert dialog box informing
the user that his or her grade is a C or lower.

13. Editor: Save lab4-1.htm.

14. Browser: Refresh lab4-1.htm. Select a numerical grade value of 80 from the drop-
down menu. You should see an alert resembling Figure 4-4.

Figure 4-4: Alert dialog box

15. Browser: Click OK to close the alert.

This lab provided an opportunity to create and use an if...else if...else statement.
You tested an integer's value and displayed an appropriate message when the value fell
into a particular range.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 4-2: Using a while statement

In this lab, you will use a while loop to test the user's input.

1. Editor: Open lab4-2.htm from the Lesson 4 folder of the Student_Files directory.

2. Editor: Locate the checkGrade() function in the <head> section of the document.
This function contains essentially the same code as lab4-1.htm. However, the user
enters a numerical grade value in a text box instead of selecting one from a drop-
down menu.

3. Editor: Create a while loop after the myGrade initialization statement. In the
condition for the loop, use the isNaN() function to test the myGrade variable. In
pseudo-code, the first line of the while statement should read: while is not a number
(myGrade).

4. Editor: One line of code is needed inside the loop. If myGrade is not a number,
reassign myGrade the return value of a prompt dialog box that asks the user to input
a numerical value. Do not forget to use the parseInt() function to convert the string
value returned by the prompt to an integer. The while loop will continue until the
user enters a number.

5. Editor: Save lab4-2.htm.

6. Browser: Open lab4-2.htm. Your screen should resemble Figure 4-5.

Figure 4-5: Page for lab4-2.htm

7. Browser: Entering a numerical value between 0 and 100 in the text box and clicking
the Check Grade button will result in the same output as lab4-1.htm. Enter a non-
numerical value in the text box and click the Check Grade button. You should see a
prompt similar to Figure 4-6.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 4-6: Prompt dialog box

8. Browser: Click OK or Cancel without entering any information, or enter a non-
numerical value. You should see the prompt again. In fact, the prompt dialog box
should repeatedly appear until a numerical value is entered. After a numerical value
is entered, you should see the same output as produced by lab4-1.htm.

This lab is intended to demonstrate a while loop, and you have seen the effect of
using a loop to repeatedly ask for user input. However, good JavaScript programming
practices suggest that you do not prevent a user from canceling a prompt dialog box
as shown in lab4-2.htm. A well-designed program would ask for user input a
predetermined number of times. If the user repeatedly clicks Cancel, at some point
the program should exit. The next portion of this lab will demonstrate this concept.

9. Editor: Open lab4-2a.htm. This is the same program as lab4-2.htm with a minor
improvement. A variable named attempts has been declared and initialized with a
value of 1.

10. Editor: In the conditional expression for the while loop, also test the attempts
variable for a value less than or equal to 2. Use the logical AND operator to perform
this task.

11. Editor: Add a statement inside the loop that increments the attempts variable each
time through the loop.

12. Editor: Note that an additional statement has been provided for you after the while
loop. An if statement tests the myGrade and attempts variables. If myGrade is still
not a number, and the attempts variable equals 3, a return statement is used to
exit the function.

13. Editor: Save lab4-2a.htm.

14. Browser: Open lab4-2a.htm. Experiment with the page. If the user does not enter
the required data in two attempts, the prompt dialog boxes should disappear with no
further output from the program.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 4-3: Using a for statement

In this lab, you will use a for statement to output XHTML and the value of the loop
counter variable. You will use a for loop to create a drop-down menu that contains the
values 100 decreasing to zero.

1. Editor: Open lab4-3.htm from the Lesson 4 folder of the Student_Files directory.

2. Editor: This file is essentially the same as lab4-1.htm. Locate the second <script>
block in the <body> section of the document. Create a for statement. Create a
variable named i for the loop counter variable. Assign an initial value of 100 to i.
The loop will continue as long as i is greater than or equal to zero. Use the
decrement operator (--) to decrement i by one each time through the loop.

3. Editor: Inside the loop, use a document.write() statement to output an <option>
tag. Concatenate the value of i into the expression. The value of the loop counter
variable will supply the text for the drop-down menu.

4. Editor: Save lab4-3.htm.

5. Browser: Open lab4-3.htm. Your screen should resemble Figure 4-1. Click on the
drop-down menu to open it, and scroll through the items in the drop-down menu.
Your screen should resemble Figure 4-11.

Figure 4-11: Page for lab4-3.htm

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

6. Browser: The program should respond in a manner similar to lab4-1.htm when a
numerical grade value is selected from the drop-down menu.

This lab demonstrated the ease with which a few lines of JavaScript code generated 100
lines of XHTML code. The for statement can be used to automate many tasks in many
different situations.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 4-4: Nesting if and break statements inside a while loop

1. Editor: Open the lab4-4.htm file from the Lesson 4 folder of the Student_Files
directory.

2. Editor: Locate the <script> block in the <head> section of the document. A function
named breakTest() has been started for you. Two variables have been declared:
loopBoolean and myValue. The loopBoolean variable is set to true and is used to
determine when the while loop will end. The myValue variable is assigned an empty
string in anticipation of the user's input.

3. Editor: After the variable declarations, a while loop is started. After the myValue
variable receives its value, add an if statement that tests myValue for a null value.
If it is null, invoke a break statement.

4. Editor: Save lab4-4.htm.

5. Browser: Open lab4-4.htm. Your screen should resemble Figure 4-12.

Figure 4-12: Page for lab4-4.htm

6. Browser: Click the Break Test button. You should see a prompt dialog box as shown
in Figure 4-13.

Figure 4-13: Prompt dialog box

7. Browser: Click OK without entering any data. The prompt dialog box should
reappear whenever this action is taken. Click Cancel. The program should recognize
the null value returned when this action is taken and the break statement should
end the program.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

8. Browser: Any data entered in the prompt dialog box should appear in an alert dialog
box.

Lab 4-5: Using a continue statement

In this lab, you will use the continue statement to manipulate a for loop.

1. Editor: Open lab4-5.htm from the Lesson 4 folder of the Student_Files directory.

2. Editor: A for loop has been defined that outputs the numbers 1 through 100. Before
the document.write() statement, create an if statement that tests the loop counter
variable i. If i divided by 7 returns a remainder, invoke a continue statement. The
only numbers that should be output are those evenly divisible by 7. Hint: Use the
modulus operator (%) to perform this task.

3. Editor: Save lab4-5.htm.

4. Browser: Open lab4-5.htm. Your screen should resemble Figure 4-15.

Figure 4-15: Page for lab4-5.htm

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 4-6: Using a switch statement

In this lab you will use a switch statement.

1. Editor: Open lab4-6.htm from the Lesson 4 folder of the Student_Files directory.

2. Editor: Study the code in the file, which appears as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 4-6</title>

<script language="JavaScript" type="text/javascript">
function switchTest(SetOption) {
OptionsSelect = document.frmOne.SetOption.value

alert(OptionsSelect);
}
</script>
<body>
<h3>CIW JavaScript Specialist</h3>
<form name = "frmOne">

<select name= "SetOption" onchange="switchTest(this)">
<option value = "0">Select a U.S. City - See the State!</option>
<option value = "1">Phoenix</option>
<option value = "2">Roswell</option>
<option value = "3">Sacramento</option>
<option value = "4">My city</option>
<option value = "5">Your city</option>
</select>

</form>

</body>
</html>

3. Browser: Open lab4-6.htm. The page should resemble Figure 4-16.You will see that
selecting an option automatically displays an alert (without clicking a button) that
tells the value of the select statement. Notice the U.S. city choices are assigned values
1, 2 and 3, and notice the additional selections ("my city" and "your city") are defaults
that are assigned the values are 4 and 5. We will discuss the default values shortly.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 4-16: Page for lab4-6.htm

4. Editor: Open the file lab4-6.htm. You will change the code between the
<script></script> tags as follows. Be sure to overwrite the previous code in the
<script></script> section so these commands do not duplicate. Change the code as
shown in bold, then save the file. (The file lab4-6_newCode.txt provides this new
code for you to use.)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 4-6</title>

<script language="JavaScript" type="text/javascript">
function switchTest(SetOption) {
OptionsSelect = document.frmOne.SetOption.value

alert(OptionsSelect);

switch (OptionsSelect) {
case "1":
alert("Arizona")
break
case "2":
alert("New Mexico")
break
case "3":
alert("California")
break
default:
alert("Cannot be determined")
}
}
</script>

<body>
<h3>CIW JavaScript Specialist</h3>
<form name = "frmOne">

<select name= "SetOption" onchange="switchTest(this)">
<option value = "0">Select a City - See the State!</option>
<option value = "1">Phoenix</option>
<option value = "2">Roswell</option>
<option value = "3">Sacramento</option>
<option value = "4">My city</option>

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

<option value = "5">Your city</option>
</select>

</form>
</body>
</html>

This code demonstrates one of a JavaScript developer's favorite tools. The select
statement will trigger the switchtest function with a switch statement. Then the
script will react based on the user's selection. This type of script can be written to
take the user to a different page, or to show an alert box (as in this example), and
often it will be used in a quiz to activate the next question.

Tech Note: Each value must have a corresponding case statement. It is good practice to
put in a default case statement that will catch everything outside of the intended
results. In this way, all situations are covered, even unexpected results. This example
uses "cannot be determined" as the default case statement.

5. Editor: Save lab4-6.htm.

6. Browser: Open lab4-6.htm. As you select the various options, you will see alert
boxes similar to those shown in Figure 4-17.

Figure 4-17: Alert boxes

7. Browser: When you select any of the first three options from the list (the U.S. city
names), you will see the corresponding alert listing that city's state. This is because
the switch statement recognizes the number (1, 2 or 3), matches it in the proper case
and runs the alert, and then the break statement stops it from continuing. If the
option selected is outside the switch's case statement (0, 4, 5), then it will display the
default statement ("Cannot be determined"). Then the break statement will stop the
script. The switch statement will check each case in order and check for a match. If
there are no matches, then the last statement (the default statement) will catch the
switch statement, and the script will not have issues.

Tech Note: The break statement will stop the script — not just for switch statements
like this one, but anywhere in JavaScript. The default case statement will activate only
if no other case statement matches the choices. The switch statement is one of the
easiest ways to utilize multiple options without using nested if statements (which is
considered messy programming). Typically, if there are more than three choices, the
developer should consider using the switch statement.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 5-1: Launching a new window with the open() method

In this lab, you will open a new window. This lab launches a new instance of the browser
that points to another Web site.

1. Editor: Open lab5-1.htm from the Lesson 5 folder of the Student_Files directory.

2. Editor: Locate the existing <script> tags. A function named newWindow() has been
started for you. Inside this function, use the open() method of the window object to
open a new window to the CIW Web site, using http://www.CIWcertified.com for the
URL.

3. Editor: Experiment with the various attributes, such as toolbar, location and
scrollbars, in the open() method for the new window. For this portion of the lab,
omit any height or width attributes to demonstrate the effect when these attributes
are not included in the open() method's arguments.

4. Editor: A form button is used to call the newWindow() function. This button has been
scripted for you.

5. Editor: Save lab5-1.htm.

6. Browser: Open lab5-1.htm. Your screen should resemble Figure 5-2.

Figure 5-2: Page for lab5-1.htm

7. Browser: Click the Open New Window button to launch a new window. Because you
did not specify a size, the new window might match the size of the existing window,
or it might be a different size. The new window should resemble Figure 5-3,
depending on the attributes you used in the open() method.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 5-3: CIW Web site

8. Browser: Close the CIW window.

9. Editor: Add height and width attributes to the open() method. Use 400 for the width
and 300 for the height. Save lab5-1.htm.

10. Browser: Refresh lab5-1.htm. Click the Open New Window button. The new window
should resemble Figure 5-4, depending on its attributes.

Figure 5-4: New window with height and width attributes

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

11. Browser: The outer frame of the new window should have a width of 400 pixels and a
height of 300 pixels.

Note that browsers will not consistently interpret the height and width attributes.
However, if the browser does not create a new window with the exact measurements
specified, it will create a new window that is proportional to the dimensions in the
attribute list.

In this lab, you used the window object's open() method to open a new window. You
targeted a specific URL, which filled the new window. The function newWindow() was
called using the onclick event handler of the button object.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 5-2: Writing content to new windows

In this lab, you will open a window, and assign it a name that will be used to refer to its
objects and properties. You will then write content to the new window, and learn how to
close the window programmatically.

1. Editor: Open lab5-2.htm from the Lesson 5 folder of the Student_Files directory.

2. Editor: Locate the existing <script> tags. A function named smallWindow() has been
started for you. Inside the function, create a variable named myWindow. Assign to
myWindow the result of the open() method of the window object. Do not assign a URL in
the open() method's arguments. Insert an empty set of quotation marks in the URL's
place. Remember to give the window a name. For the attributes list, assign only a
height of 100 and a width of 100.

3. Editor: Add the smallWindow() function to add content to the new window. Use the
reference to the new window held in the myWindow variable to write to the new
window's document using document.write(). In the new window, create <form>
tags. Within the form, use an <input> tag to create a button object. Set the button's
value attribute equal to Close. Add an onclick event handler to call the
window.close() method. This will provide a button for the user to close the newly
opened window.

4. Editor: In the lab5-2.htm file, a form button is used to call the smallWindow()
function. This button has been scripted for you.

5. Editor: Save lab5-2.htm.

6. Browser: Open lab5-2.htm. Your screen should resemble Figure 5-2.

7. Browser: Click the Open New Window button. You should now see a small window,
as shown in Figure 5-5. If not, verify that the source code you entered is correct.

Figure 5-5: Small window opened

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

8. Browser: Click Close in the new window. The new window should close. If it does
not, verify that the source code you entered is correct.

Tech Note: The browser may attempt to stop the script, or it may force you to allow
ActiveX controls in order to run this script.

If you are encountering errors, first look for misspellings. Next, verify that you are
using the proper case for each command. Careless typing in your script can lead to
hours of troubleshooting. Get in the habit of checking for misspellings and case-
sensitivity before you look for other errors.

In this lab, you learned that you can give a window an identity. In this case, the new
window was given the name myWindow. Because the window had a name, you could
access the window's document, write to the new window, and use the window object's
close() method to close that particular window. Writing dynamic content to a new
window is an important concept, and will be explored further in this lesson.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 5-3: Changing status bar text

In this lab, you will change the status bar text using the onmouseover event handler for
the <a> tag. You will then change the status bar text to an empty string (or its default
state, depending on the browser) using the onmouseout event handler.

1. Editor: Open lab5-3.htm from the Lesson 5 folder of the Student_Files directory.

2. Editor: Locate the <a href> that is defined before the
 tag. Inside the anchor tag, add an onmouseover
event handler that changes the status bar text to the following:

Visit the CIW Web site!

Also, add an onmouseout event handler that changes the status text bar to an empty
string.

3. Editor: Save lab5-3.htm.

4. Internet Explorer Browser: Open lab5-3.htm in Internet Explorer. Your screen
should resemble Figure 5-7.

Figure 5-7: Page for lab5-3.htm

5. Internet Explorer Browser: Move the mouse pointer over the CIW image. The
message you created should appear in the status bar as shown in Figure 5-8. If it
does not, verify that the source code you entered is correct.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 5-8: Page for lab5-3.htm status bar message

6. Firefox Browser: Open lab5-3.htm in Firefox. Move the mouse pointer over the CIW
image. Do you see your status bar message?

7. Firefox Browser: You should see text in the status bar, but it is not the same
message you saw in Internet Explorer. In Firefox, you should see only the URL for the
CIW site, which is the target of the link. Why does this happen?

For security reasons, some browsers are beginning to disallow any change in the
status bar message to ensure that you know exactly where a link is pointing before
you click it. This helps prevent phishing and pharming attacks, in which a look-alike
site impersonates a trusted site, such as a bank or online payment service. The
imposter site can use a status bar message to mask a link's URL so you will click it,
because you may not be able to detect the imposter once at the site. The imposter
then gains your trust, and you may enter sensitive information, such as a password
or credit card number. For this reason, the status property may eventually be
deprecated.

In this lab, you learned to manipulate the status property of the window object to
change the text in the window's status bar. Now that you have worked with the window
object, you will learn about the document object.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 5-4: Assigning properties to a remote documentdynamically

In this lab, you will see how to create a remote document and write dynamic content to
that document. The user will be asked several questions about look and feel, as well as
the content intended for the new document. After the user supplies the information, the
dynamic content is written to the remote document from the script contained in the lab
file lab5-4.htm.

1. Editor: Open lab5-4.htm from the Lesson 5 folder of the Student_Files directory.

2. Editor: Examine the writeToDocument() function:

<script language="JavaScript" type="text/javascript">
<!--
function writeToDocument(){
 var textColor, backColor, pageTitle;
 var yourText, pageContent, docWindow;

 textColor =prompt("Please enter a text color:","white");
 backColor =prompt("Please enter a background color:","black");
 pageTitle =prompt("The page will be titled: ",
 "Default Title");
 yourText = prompt("Add content to the new document:",
 "page content");

 pageContent = "<html><head><title>";
 pageContent += pageTitle + "</title>";
 pageContent += "<script>alert('The page ' +
 document.title + ' was created: '
 + document.lastModified);</script>";
 pageContent += "</head><body " + "bgcolor=" + backColor + ">" +
 "" + yourText + "";
 pageContent += "</body></html>";

 docWindow = open("","docWin","width=250,height=150,
 resizable=1,status=1");

 // Create a with statement

 }
//-->
</script>
</head>

3. Editor: Note that several variables have been created. The variables textColor,
backColor, pageTitle and yourText are all assigned the result of user input via
prompt() methods. The pageContent variable is assigned a combination of XHTML,
JavaScript code, document object properties and variable values. The docWindow
variable receives a reference to a new window via the window.open() method.

4. Editor: Locate the comment that reads //Create a with statement. Modify the
writeToDocument() function to add a with statement. The with statement should
use the docWindow document as its target object. Be sure to open the XHTML data
stream to the new document. Add code that will set the bgColor and the fgColor.
For these, use the values in the backColor and textColor variables. Use the
write() method to output the pageContent variable. Make sure to close the XHTML
data stream.

5. Editor: Examine the rest of the code on the page. Save lab5-4.htm.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

6. Browser: Open lab5-4.htm in Internet Explorer. Your screen should resemble Figure
5-10.

Figure 5-10: Page for lab5-4.htm

7. Browser: Click the Write To Remote Document button. This button has been
scripted to call the writeToDocument() function. You will see a series of prompt
dialog boxes, which will each appear as you enter data into the previous one (see
Figure 5-11).

Figure 5-11: Prompt dialog boxes

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

8. Browser: After entering data into all dialog boxes and clicking OK, you should see an
alert dialog box similar to that shown in Figure 5-12.

Figure 5-12: Alert dialog box

9. Browser: Click OK. Your screen should resemble Figure 5-13, depending on your
input.

Figure 5-13: New window

10. Browser: If time permits, try running this script in another browser, such as Firefox.
How do the results differ? Remember that perfectly valid script often renders
differently in different browsers and browser versions. Be sure to always test your
code in as many browsers as possible.

This lab demonstrates that your scripts can reflect your X/HTML proficiency. The more
sophisticated your knowledge of X/HTML, the more creative you can be when designing
dynamically generated Web pages.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 5-5: Preloading and swapping images to create an active link

In this lab, you will use the image object to replace a default image with another, using
the onmouseover and onmouseout event handlers discussed elsewhere in the course.
You will add code to preload two images for the XHTML document. These images will be
used to create rollover effects with each image used as a link on the page. The
navigational button has two images associated with it: one for when the user hovers the
mouse pointer over the image (on position), and one for when the user moves the mouse
pointer away from the image (off position). The src properties will be assigned values
based on the two image files provided in the images directory of the Lesson 5 folder of the
Student_Files directory: images/ciw_on.gif and images/ciw_off.gif.

1. Editor: Open the lab5-5.htm file from the Lesson 5 folder of the Student_Files
directory.

2. Editor: Locate the <script> tag in the document's <head> section. Locate the
comment that reads as follows:

//Add image preloading code

3. Editor: Add code to ensure that the target browser supports the image object. Then
add code that will preload the images provided. Create four new Image() objects
using variables named:

• ciw_on

• ciw_off

• ciw1_on

• ciw1_off

Assign the src properties as follows:

• Assign images/ciw_on.gif for ciw_on

• Assign images/ciw_off.gif for ciw_off.

• Assign images/ciw1_on.gif for ciw1_on

• Assign images/ciw1_off.gif for ciw1_off

4. Editor: Your code should resemble the following (before adding the preloading code):

<script type="text/javascript">
<!--

 //Add image preloading code

 function imageOn(imageName){
 if (document.images){
 (imageName=="ciw") ? document.images[0].src
 = ciw_on.src : "";
 (imageName=="ciw1") ? document.images[1].src
 = ciw1_on.src : "";
 }
 }

 function imageOff(imageName){
 if (document.images){

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

 (imageName=="ciw") ? document.images[0].src
 = ciw_off.src : "";
 (imageName=="ciw1") ? document.images[1].src
 = ciw1_off.src : "";
 }
 }
//-->

</script>

5. Editor: Examine the imageOn() and imageOff() functions that have been provided
for you. These functions will be discussed later in this lesson.

6. Editor: Scroll to the bottom of the document and locate the
 tag. Note that the name attribute inside the
 tag is set to "ciw".

7. Editor: Examine the <a> tag that encloses the tag. An onmouseover event
handler has been scripted to call the imageOn() function. When the function is
called, the value of the name attribute for the tag is passed as an argument.

8. Editor: Still inside the <a> tag, an onmouseout event handler has been scripted to
call the imageOff() function. When the function is called, the value of the name
attribute for the tag is passed as an argument.

9. Editor: The tag and its associated <a> tag
are constructed in the same manner.

10. Editor: Save lab5-5.htm.

11. Browser: Open lab5-5.htm. Your screen should resemble Figure 5-14.

Figure 5-14: Page for lab5-5.htm

12. Browser: Move your cursor over the CIW image. Your screen should resemble Figure
5-15. If it does not, verify that the source code you entered is correct.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 5-15: Page for lab5-5.htm with image swap

13. Browser: You should see the CIW image change when the mouse pointer hovers over
it, then change back to the original image when the mouse pointer is moved away.
The second image on the page should function in the same manner.

14. Editor: If time permits, alter your code to change the status property of the window
object so that it indicates the page to which the link will take the user, as shown in
the preceding figure.

In this lab, you used the image object to create a rollover effect for navigational images on
an XHTML page.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 5-6: Identifying browser properties with the navigator object

In this lab, you will learn about the various types of information you can detect from
several navigator object properties.

1. Editor: Open the file lab5-6.htm from the Lesson 5 folder of the Student_Files
directory.

2. Editor: Locate the <script> block in the <head> section of the file, as shown in
bold. Add code to the openWindow() function. Concatenate the appCodeName,
appName, appVersion and userAgent properties of the navigator object into the
info variable. The following code shows this function before your changes:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head><title>Lab 5-7</title>

<script language="JavaScript" type="text/javascript">
<!--

function openWindow() {
 var info="";

 info += "Welcome, " + ; //Add appCodeName here
 info += " user!\nYou are using the ";
 info += + " browser,\nversion "; //Add appName here
 info += + ".\nYour user agent "; //Add appVersion here
 info += "information is " + ; //Add userAgent here

 alert(info);
}
//-->
</script>
</head>

<body>
<h3>CIW JavaScript Specialist</h3>
<hr />

<script type="text/javascript">

 //Add userAgent here to write into browser window

</script>

<form name="myForm">
<input type="button" name="buttonClick" value="Click for More Browser
Information" onclick="openWindow()" />
</form>
</body>
</html>

3. Editor: Locate the <script> block in the <body> section of the file. Add code to write
the information from the userAgent property of the navigator object into the
browser window, as shown in bold:

<script type="text/javascript">
document.write(
"<p>The property navigator.userAgent "
 + "returns:
"
 + navigator.userAgent +"</p>"
)
</script>

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

4. Editor: Save lab5-6.htm.

5. Browser: Open lab5-6.htm in the Firefox browser. Your screen should resemble
Figure 5-16.

Figure 5-16: Page for lab5-6.htm

6. Browser: Click the Click For More Browser Info button. You should see an alert
similar to Figure 5-17.

Figure 5-17 Alert in Mozilla Firefox 3.5

7. Browser: Now open the file lab5-6.htm in the Internet Explorer browser. You should
see an alert similar to Figure 5-18.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 5-18: Alert in Microsoft Internet Explorer 7.0

8. Browser: Notice that for both browsers, the appCodeName property returns Mozilla as
the browser's code name. As time permits, try opening this page in other browsers
and versions to see how the browser information differs.

Tech Note: The reason that Internet Explorer returns Mozilla for appCodeName is that
many years ago, appCodeName was used by Web developers to allow only the Netscape
(Mozilla) browser to access frames-based pages, because other browsers could not
render them. Many developers continued to exclude non-Mozilla browsers in this way
when Netscape was dominating the market. To thwart this exclusion, Microsoft began
giving its Internet Explorer browsers a Mozilla appCodeName as well. This trend has
persisted among many browsers, and even today the appCodeName will return Mozilla
for all Mozilla, Internet Explorer and Google Chrome browsers. Therefore, be sure to use
the appName property instead of appCodeName when you want to display the accurate
browser name.

This lab demonstrated the various types of information you can access using the
navigator object. One of the most challenging aspects of Internet application
development is creating code that will function in all browsers. When coding for different
browsers is a mission-critical concern, the information that the navigator object
contains is an essential element. As your application development experience grows, you
will find many uses for the navigator object.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 5-7: Redirecting to a page based on browser type

In this lab, you will create a script that will redirect to a different page depending on the
type of browser used.

1. Editor: Open the file lab5-7.html.

2. Editor: Study the code. Add the following script in the body of the document, as
shown in bold, then save lab5-7.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 5-6</title>
</head>
<body>
<h3>CIW JavaScript Specialist</h3>
<hr />

<script language="JavaScript" type="text/javascript">
 if(navigator.appName == "WebTV")
{
 alert("You're using the WebTV browser.")
 window.location="http://www.webtv.com"
}
 if(navigator.appName == "Netscape")
{
 alert("You're using a Mozilla browser.")
 window.location="http://www.mozilla.com/"
}
 if(navigator.appName == "Opera")
{
 alert("You're using an Opera Browser.")
 window.location="http://www.opera.com/"
}
 if(navigator.appName == "Microsoft Internet Explorer")
{
 alert("You're using the Internet Explorer browser.")
 window.location=" http://www.microsoft.com "
}
</script>

</body>
</html>

3. Browser: Open the file lab5-7.html in at least two different types of browsers. You
should see an alert informing you which type of browser you used to view the page.
Click OK in the alert box. The browser will redirect to another site, as instructed by
the JavaScript code.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 6-1: Using String object formatting methods

In this lab, you will use some formatting methods of the String object to manipulate text
in a new window.

1. Editor: Open the file lab6-1.htm from the Lesson 6 folder of the Student_Files
directory.

2. Editor: Locate the existing <script> tag in the <head> section of the document.
Inside the existing linksFun() function, locate the comment that reads:

//Add the alert() shown in Figure 6-1.

Create an alert() method that outputs text as shown in Figure 6-1. Use the \n
special character to create the line breaks.

Figure 6-1: Alert with line breaks in text

3. Editor: Locate the comment that reads:

//Add big() and fontcolor() methods.

Add the big() and fontcolor() methods to the text CIW Sites. Choose any color as
the argument for the fontcolor() method.

4. Editor: Locate the comment that reads:

//Add italics() method.

Add the italics() method to the text CIW.

5. Editor: Locate the comments that read:

//Add link() method
//Use http://www.CIWcertified.com.

Add the link() method to the text CIW, CIW Candidate Log-In, and
ComputerPREP. Use the URLs included in the comments for the link() method
arguments as shown in the following code:

<script type="text/Javascript">
<!--

function linksFun() {
 var content="", linkWindow;
 //Add the alert() shown in Figure 6-1
 alert("The following page provides links to: \n\nCIW\nCIW Candidate Log-
In \nComputerPREP");

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

 content += "<html><head><base target='_blank'></head><body>";
 content += "";

 //Add big() and fontcolor() methods
 content += "CIW Sites".big().fontcolor("blue");
 content += "<p>\nThese are sites of interest to ";

 //Add italics() method
 content += "CIW".italics();
 content += " candidates.</p>\n";
 content += "";

 //Add link() method
 //Use http://www.CIWcertified.com
 content += "CIW".link("http://www.CIWcertified.com");
 content += "\n";

 content += "\n";
 //Add link() method
 //Use http://www.CIWcertified.com/CandidateLogin
 content += "CIW Candidate Log-
In".link("http://www.CIWcertified.com/CandidateLogin");
 content += "\n";
 content += "\n";
 //Add link() method
 //Use http://www.ComputerPREP.com/
 content += "ComputerPREP".link("http://www.ComputerPREP.com/");
 content += "\n</body></html>";

 linkWindow=open("","Links","width=350,height=200,resizable=1");

 with(linkWindow.document) {
 open();
 write(content);
 close();
 }
 }

//-->
</script>

6. Editor: Examine the rest of the code in the linksFun() function.

7. Editor: In the body of the document, locate the comment that reads:

<!--Add HREF code -->.

Modify the <a> tag as indicated in bold (this code will be discussed following the lab):

<a href ="javascript:void(linksFun());"
onmouseover="status='CIW Links';return true;"
onmouseout="status='';return true;">

8. Editor: Save lab6-1.htm.

9. Browser: Open lab6-1.htm. Your screen should resemble Figure 6-2.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 6-2: Page for lab6-1.htm

10. Browser: Click the CIW image. You should first see an alert dialog box as shown in
Figure 6-1. You should then see a smaller window appear. The small window should
resemble Figure 6-3. If it does not, verify that the source code you entered is correct.

Figure 6-3: Links window

11. Browser: Click the links to make sure they access the appropriate sites.

In this lab, you learned how to use some of the formatting methods of the String object
to manipulate text in a new window. As time permits, try editing the source code file to
incorporate other formatting methods and other special characters.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 6-2: Applying String methods to text

In this lab, you will use some methods of the String object to examine and manipulate
the contents of several text boxes. In addition, this lab reviews another method: the
toUpperCase() string-conversion method. You will learn more about form validation
later in the course.

1. Editor: Open the file lab6-2.htm from the Lesson 6 folder of the Student_Files
directory.

2. Editor: Examine the following JavaScript code (this code will be discussed in detail
following the lab):

<script type="text/javascript">
<!--

function showUpper(checked) {
 var showThis;
 if (checked) {
 showThis = document.myForm.name.value.toUpperCase();
 } else {
 showThis = document. myForm.name.value.toLowerCase();
 }
 document.myForm.name.value = showThis;
}

function emailTest(form) {
 if (form.email_address.value.indexOf("@", 0) < 0) {
 alert("This is not a valid e-mail address!");
 } else {
 alert("This could be a valid e-mail address");
 }
}

function showFirst2(form) {
 var first2Chars;
 first2Chars = form.phone_number.value.substring(0, 2);
 alert(first2Chars);
}
//-->
</script>

3. Editor: Locate the <form> tag in the source code and examine the following
(particularly the code in bold):

<form name="myForm" id="myForm">Name:

<input type="text" size="30" name="name" />
<input type="checkbox"name="upperCheckbox"
onclick="showUpper(this.checked);"/>
Convert string to uppercase or lowercase

E-mail address:

<input type="text" size="30" name="email_address" />
<input type="checkbox" onclick="(this.checked) ? emailTest(this.form) : '';"/>
Test for e-mail address

Phone number:

<input type="text" size="30" name="phone_number" />

Fax number:

<input type="text" size="30" name="fax_number" />
<p>

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

<input type="button" value=
"First Two Characters of Phone Number" onclick=
"showFirst2(this.form);" />
</p>
<p>
<input type="button" value="Fax Number Length" onclick=
" var strLength = document.myForm.fax_number.value.length; alert('That string
is ' + strLength + ' characters long');" />
</p>
</form>

4. Editor: Close the file.

5. Browser: Open lab6-2.htm. Your screen should resemble Figure 6-5. Enter some
text and test your options.

Figure 6-5: Evaluating strings with string methods

6. Editor: As time permits, modify the emailTest() function to include a test that
ensures that the e-mail address is at least six characters in length. A suggested
solution named lab6-2a.htm is included in the Lesson 6 student files.

This lab demonstrated several String object methods.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 6-3: Creating an Array object

In this lab, you will create an Array object and add elements to the array. You will also
use the length property of Array with a for statement to write a few lines of code that
will generate three lines of output.

1. Editor: Open the file lab6-3.htm from the Lesson 6 folder of the Student_Files
directory.

2. Editor: Locate the existing <script> tag in the <head> section of the document.
Create an array named citiesArray. Add three elements to citiesArray: New
York, Los Angeles and Chicago (in that order). Use any valid syntax previously
discussed in this lesson to add the array elements to the array.

3. Editor: Locate the existing <script> tag in the <body> section of the document.
Create a variable name len. Assign the result of the citiesArray length property
as the value for len.

4. Editor: Next, create a for loop with a loop counter variable initialized to 0. The
second argument in the for loop will use the len variable to determine the number
of times that the loop will execute. Inside the loop, use a document.write()
statement to output the elements of the citiesArray with two line breaks (

) between each one.

5. Editor: Save lab6-3.htm.

6. Browser: Open lab6-3.htm. Your screen should resemble Figure 6-8. If not, verify
that the source code you entered is correct.

Figure 6-8: Page for lab6-3.htm

7. Editor: Use the sort() method to sort citiesArray. Save lab6-3.htm.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

8. Browser: Refresh lab6-3.htm. Your screen should resemble Figure 6-9.

Figure 6-9: Page for Llb6-3.htm with sorted array

9. Editor: After the for loop, add an alert that outputs the value of citiesArray[0].
This will illustrate the fact that the array has been rearranged, not just temporarily
copied. Save lab6-3.htm.

10. Browser: Refresh lab6-3.htm. You should see an alert as shown in
Figure 6-10.

Figure 6-10: Alert dialog box

11. As time allows, try changing the city names in this page to see the sort method in
action. Also try adding additional names to the list, which you can make as long as
you like.

In this lab, you created an Array object and added elements to the array. You also saw
that using the Array object and its length property with a for statement allowed you to
write a few lines of code to generate three lines of output. However, had citiesArray
contained 1,000 elements, the same few lines of code would have generated 1,000 lines of
output. Using a loop construct to access array values is a very common operation in
JavaScript. The index numbers for arrays begin with 0, and a loop counter variable is
typically initialized to 0. Therefore, a for loop is a natural tool for accessing an array's
values.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 6-4: Accessing and using dates with the Date object

In this lab, you will use the Date object and the Array object to determine and use
information about the current date. You will also use a simple formula to add the
appropriate suffix to the number for the day of the month (changing the cardinal number
to an ordinal number, as commonly used for dates).

1. Editor: Open the file lab6-4.htm from the Lesson 6 Folder of the Student_Files
directory. The code appears as follows. Notice the bold code, where you will create a
date object:

<script type="text/javascript">
<!--

// Create Date object

var monthName = new Array();
monthName[0] = "January";
monthName[1] = "February";
monthName[2] = "March";
monthName[3] = "April";
monthName[4] = "May";
monthName[5] = "June";
monthName[6] = "July";
monthName[7] = "August";
monthName[8] = "September";
monthName[9] = "October";
monthName[10] = "November";
monthName[11] = "December";

var myYear = today.getFullYear();
var myDate = today.getDate();

var dayExt = "th";

if ((myDate == 1) || (myDate == 21) || (myDate == 31)) dayExt= "st";
if ((myDate == 2) || (myDate == 22)) dayExt = "nd";
if ((myDate == 3) || (myDate == 23)) dayExt = "rd";

var extDate = myDate + dayExt;

alert("The month number is: " + (today.getMonth() + 1));
alert("The date number is: " + today.getDate());
alert("The year number is: " + today.getFullYear());

// -->
</script>

</head>
<body>
<h3>CIW JavaScript Specialist<h3>
<hr />
<h4>Today is the
<script type="text/javascript">
<!--
document.write(extDate + " day of ");
document.write(monthName[today.getMonth()] + " in the year ");
document.write(myYear + ".");
// -->
</script>
</h4>

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

2. Editor: Locate the comment that reads:

//Create Date object.

Create a variable named today and assign it the result of creating a Date object.

3. Editor: Examine the rest of the source code with your instructor, then save
lab6-4.htm.

4. Browser: Open lab6-4.htm. Three alert dialog boxes should appear indicating the
month number, date number and year number, respectively, as shown in
Figure 6-12.

Figure 6-12: Alerts with date information

5. Browser: After closing the alerts, your screen should resemble Figure 6-13, except for
differences in the day, month and year displayed.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 6-13: Date information calculated through script

In this lab, you used the Array object as well as the Date object to determine and use
information about the current date. You also used a simple formula to add the
appropriate suffix to the number for the day of the month (i.e., changing the cardinal
number to an ordinal number, as commonly used for dates).

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 6-5: Creating an onscreen clock

In this lab, you will review code that creates a clock. This program uses the
setTimeout() method to update the clock every second by recursively calling a function
that outputs the time to a text box.

1. Editor: Open the file lab6-5.htm file from the Lesson 6 folder of the Student_Files
directory.

2. Editor: Examine the following code with your instructor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
<!--

function runClock() {
 var timeNow = new Date();
 var hours = timeNow.getHours();
 var minutes = timeNow.getMinutes();
 var seconds = timeNow.getSeconds();
 var ampm = "";

 (seconds < 10) ? seconds = "0" + seconds : seconds;
 (minutes < 10) ? minutes = "0" + minutes : minutes;
 (hours < 12) ? ampm = "AM" : ampm = "PM";
 (hours > 12) ? hours = hours - 12 : hours;
 (hours == 0) ? hours = 12 : hours;

 var stringTime = " " + hours + ":" + minutes + ":" + seconds + " " + ampm;

 document.clockForm.clockBox.value = stringTime;

 setTimeout("runClock()", 1000);
}

//-->
</script>
<title>Lab 6-5</title>
</head>
<body onload="runClock();">
<h3>CIW JavaScript Specialist</h3>
<hr />
<form name="clockForm" id="clockForm">
<h4>Time Watcher</h4>
<input type="text" name="clockBox" size="11"
onfocus="blur();" />
</form>
</body>
</html>

3. Editor: Close the file.

4. Browser: Open lab6-5.htm. Your screen should resemble Figure 6-14.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 6-14: Page for lab6-5.htm

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 6-6: Using the Math object to generate a random quotation

In this lab, you will use the Math object and two of its methods. The XHTML page used
for this lab will display random quotations, using the Math object to determine which
quotation will appear.

1. Editor: Open the file lab6-6.htm from the Lesson 6 folder of the Student_Files
directory. Examine the code, which appears as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/><title>Lab 6-6</title>
</head>

<body onload="quotes()">
<h3>CIW Web Languages</h3>
<hr />
<script language="JavaScript" type="text/javascript">
var randomnumber=Math.floor(Math.random()*9);
alert(randomnumber);
<!--

// -->
</script>
</body>
</html>

2. Editor: Notice the code floor(math.random()*9). This will create a variable from 0
to 9 by creating a number less than 1 (math.random), then multiplying it by 9 so the
most it can be is 9.99, which will round to 9. (The floor() method rounds down, to
the bottom (or floor) of the number.)

3. Browser: Run the script. It will display an alert box with a value from 1 to 9. Refresh
the browser several times. Different numbers will appear.

4. Editor: Remove the alert(), and place the following code between the
<script></script> tags as shown in bold:

<script language="JavaScript" type="text/javascript">
<!--
// Make sure these quotes don't wrap in your file

 function quotes(){
 var quotes = new Array()
 quotes[0] = "Every time history repeats itself the price goes up.
<small>- Anonymous</small>"
 quotes[1] = "The moment you think you understand a great work of art, it's
dead for you.
<small>- Robert Wilson</small>"
 quotes[2] = "To love one person with a private love is poor and miserable;
to love all is glorious.
<small>- Thomas Traherne</small>"
 quotes[3] = "Every violation of truth is not only a sort of suicide in the
liar, but is a stab at the health of human society.
<small>- Ralph
Waldo Emerson</small>"
 quotes[4] = "Man is to be found in reason, God in the passions.
<small>- G. C. Lichtenberg</small>"
 quotes[5] = "Great innovations should not be forced on slender
majorities.
<small>- Thomas Jefferson</small>"
 quotes[6] = "In this world nothing can be said to be certain, except death
and taxes.
<small>- Benjamin Franklin</small>"

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

 quotes[7] = "Nine-tenths of wisdom consists in being wise in time.
<small>- Theodore Roosevelt</small>"
 quotes[8] = "We have no more right to consume happiness without producing
it than to consume wealth without producing it.
<small>- George
Bernard Shaw</small>"
 quotes[9] = "So little done, so much to do.
<small>- Cecil
Rhodes</small>"
 document.write("<h3>CIW JavaScript Specialist</h3>");
 document.write("<hr />”);
 document.write(quotes[randomnumber]);
 }

 // Use Math object

// -->:
</script>

5. Editor: Save lab6-6.htm.

6. Firefox Browser: Open lab6-6.htm in Firefox. Your screen should resemble Figure 6-
16. If it does not, verify that the source code you entered is correct.

Figure 6-16: Page for lab6-6.htm

7. Firefox Browser: Run the script in Firefox and refresh the page. You will see a
different quotation each time you refresh. Reload the file several times and you will
see different quotations. Because the generator is truly random, you may see the
same quotation more than once, even subsequently. If you reload enough times, you
will eventually see all the quotations. This script works the same in Google Chrome.

8. Internet Explorer Browser: Now open the file lab6-6.htm in Internet Explorer and
run the script. What happens when you refresh the page? This is another example of
code that is interpreted differently by different browsers. In Internet Explorer, the
document.write() does not reload. You can fix this.

9. Editor: Open lab6-6a_IE_complete.htm. Study the code, and notice the changes
made to this script (shown in bold below). Notice the differences in the <body> tag, as

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

well as the placement of the <h3> page heading into the document.write. Notice also
the changes to the function and to its placement. These modifications to the code will
cause Internet Explorer to refresh the DOM. This difference demonstrates one way to
write code that will work in several browsers.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 6-6a</title>
</head>

<body>
<script language="JavaScript">
var quotes=new Array()

 quotes[0] = "Every time history repeats itself the price goes up.
<small>- Anonymous</small>"
 quotes[1] = "The moment you think you understand a great work of art, it's
dead for you.
<small>- Robert Wilson</small>"
 quotes[2] = "To love one person with a private love is poor and miserable; to
love all is glorious.
<small>- Thomas Traherne</small>"
 quotes[3] = "Every violation of truth is not only a sort of suicide in the
liar, but is a stab at the health of human society.
<small>- Ralph
Waldo Emerson</small>"
 quotes[4] = "Man is to be found in reason, God in the passions.
<small>- G. C. Lichtenberg</small>"
 quotes[5] = "Great innovations should not be forced on slender majorities.
<small>- Thomas Jefferson</small>"
 quotes[6] = "In this world nothing can be said to be certain, except death
and taxes.
<small>- Benjamin Franklin</small>"
 quotes[7] = "Nine-tenths of wisdom consists in being wise in time.
<small>- Theodore Roosevelt</small>"
 quotes[8] = "We have no more right to consume happiness without producing it
than to consume wealth without producing it.
<small>- George Bernard
Shaw</small>"
 quotes[9] = "So little done, so much to do.
<small>- Cecil
Rhodes</small>"
var i = quotes.length;
var whichquotes=Math.round(Math.random()*(i-1));
function showquotes(){document.write(quotes[whichquotes]);}
document.write("<h3>CIW JavaScript Specialist</h3>");
document.write("<hr />");
showquotes();
</script>

</body>
</html>

10. Internet Explorer Browser: Open the file lab6-6a.htm in Internet Explorer, and try
refreshing the page. This script will refresh properly in Internet Explorer, Firefox and
Chrome. Note that both versions of this script use valid JavaScript code, but the first
script renders as expected in only two browsers, whereas the second script renders
as expected in all the major browsers. This demonstrates again why it is important to
check your code in multiple browsers.

In this lab, you used the Math object's random() method to generate a random number
between 0 and 1. You multiplied that random number by 9, then used the floor()
method to create an integer used as the subscript for the quotes array. You then used a
document.write() statement to output a random element from the array. You also
explored ways to modify code that does not work as expected in all browsers.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 7-1: Working with text boxes, check boxes and buttons

In this lab, you will work with form elements in your JavaScript code and perform some
basic form field validation.

1. Editor: Open the file lab7-1.htm from the Lesson_7 folder of the Student_Files
directory.

2. Editor: An XHTML form has been created for you. Note that the text object in the
form is named myText. Note also that a button object is scripted to call a function
named checkText(). As previously discussed, the argument this.form passes the
form's name/value pairs to the function.

3. Editor: Locate the existing <script> tag in the document's <head> section. Locate
the checkText() function that has been started for you. You will add two lines of
code to this function. Locate the comment that reads as follows:

// Check myText element value

Create a variable named myValue and assign as its value the text entered in the
myText form element. Then create an alert dialog box that reflects this information
back to the user.

4. Editor: Save lab7-1.htm.

5. Browser: Open lab7-1.htm. Your screen should resemble Figure 7-2.

Figure 7-2: Page for lab7-1.htm

6. Browser: Enter data in the text field. Click the Check Input button. You should see
an alert dialog box containing the text entered in the text field. If you do not, verify
that the source code you entered is correct.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

7. Editor: Save lab7-1.htm as lab7-1a.htm. You will now add code to lab7-1a.htm that
performs simple form validation. Following the myValue variable declaration, create
an if statement that checks myValue for a value. If myValue is empty, create an alert
dialog box that asks the user to enter data. Then use the focus() method to place
the user's cursor in the text box. As the next line of code, use the return keyword to
end the function. Remember to properly close the if statement. As in lab7-1.htm, if
user input is present, it should appear in an alert dialog box.

8. Editor: Save lab7-1a.htm.

9. Browser: Open lab7-1a.htm. Your screen should resemble Figure 7-2. Without
entering data, click the Check Input button. You should see an alert similar to
Figure 7-3. If you do not, verify that the source code you entered is correct.

Figure 7-3: Alert dialog box

10. Editor: Open the file lab7-1b,htm from the Lesson_7 folder of the Student_Files
directory. This file contains an XHTML form with a checkbox object named
myCheckBox. A button object is scripted to call a function named isChecked(). The
argument this.form passes the form's name/value pairs to the function.

11. Editor: In the isChecked() function that has been started for you, locate the
comment that reads as follows:

// Create booleanChecked variable

Create a variable name booleanChecked. Assign as its value the return value of the
checked property for myCheckBox. An if statement has been created for you that
reflects to the user the state of the check box.

12. Editor: Save lab7-1b.htm.

13. Browser: Open lab7-1b.htm. Your screen should resemble Figure 7-4.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 7-4: Page for lab7-1b.htm

14. Browser: Test the page to ensure that the proper alert dialog box appears when the
check box is selected. If the proper alert dialog box does not appear, verify that the
source code you entered is correct.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 7-2: Working with radio buttons

In this lab, you will work with radio buttons in your JavaScript code. You will capture the
state of radio objects and use radio object properties in a for loop to detect which radio
button is selected.

1. Editor: Open the file lab7-2.htm from the Lesson_7 folder of the Student_Files
directory.

2. Editor: This file contains an XHTML form with a group of radio objects named
myRadio. A button object is scripted to call a function named isChecked(). The
argument this.form passes the form's name/value pairs to the function.

3. Editor: In the isChecked() function that has been started for you, a variable named
len has been created. This variable is assigned the value returned by the length
property for the myRadio group. Locate the comment that reads as follows:

// Create for loop

Create a for loop. Use a loop counter variable that starts at zero. Use the len
variable in the loop's logical expression. Inside the loop, determine whether a
particular radio object is selected. Create an alert dialog box that reflects to the user
the value of any selected radio button.

4. Editor: Save lab7-2.htm.

5. Browser: Open lab7-2.htm. Your screen should resemble Figure 7-5.

Figure 7-5: Page for lab7-2.htm

6. Browser: Select a radio button, then click the Check Input button. If the first radio
button is selected, you should see an alert similar to Figure 7-6. If you do not, verify
that the source code you entered is correct.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 7-6: Alert dialog box

7. Browser: Ensure that the proper message is received for each radio button selection.

8. Editor: Save lab7-2.htm as lab7-2a.htm. Determine a way to give the user an
appropriate message if no radio button is selected when the check input button is
clicked.

9. Editor: Save lab7-2a.htm.

10. Browser: Open lab7-2a.htm. Your screen should resemble Figure 7-5. Click the
Check Input button without selecting a radio button. You should see an alert dialog
box as shown in Figure 7-7. If you do not, check the logic of your source code.

Figure 7-7: Alert dialog box

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 7-3: Working with selection lists

In this lab, you will create a drop-down selection list and receive the contents of the form
on the page, to determine which option was selected from the drop-down menu and
reflect the option's value back to the user.

1. Editor: Open the file lab7-3.htm from Lesson_7 folder of the Student_Files directory.

2. Editor: This file contains an X/HTML form with a select object named mySelect. A
button object is scripted to call a function named isSelected(). The argument
this.form passes the form's name/value pairs to the function.

3. Editor: In the isSelected() function that has been started for you, a variable
named len has been created. This variable is assigned the value returned by the
length property for the mySelect object. Locate the comment that reads as follows:

// Create for loop

Create a for loop. Use a loop counter variable that starts at zero. Use the len
variable in the loop's logical expression. Inside the loop, determine whether a
particular option is selected. Create an alert dialog box that reflects to the user the
value property of any selected option.

4. Editor: Save lab7-3.htm.

5. Browser: Open lab7-3.htm. Your screen should resemble Figure 7-8.

Figure 7-8: Page for lab7-3.htm

6. Browser: Make a selection from the drop-down menu and click the Check Selection
button. If you select the second option, you should see an alert dialog box that
resembles Figure 7-9. If you do not, verify that the source code you entered is correct.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 7-9: Alert dialog box

7. Browser: Test the page to ensure that the proper value is returned for each item in
the drop-down menu.

8. Editor: Open lab7-3a.htm. In the body of the document, locate the comment that
reads as follows:

<!-- Add onchange event handler -->

This file is a modified version of lab7-3.htm. An extra <option> tag is defined before
the existing options. This option's text reads Select An Item. Also, no button object is
scripted to invoke the function as in lab7-3.htm. In the XHTML <select> tag, add an
onchange event handler that invokes the isSelected() function. Make sure to pass
this.form as an argument in the method invocation statement.

9. Editor: After the isSelected() method invocation statement, add a semicolon. You
will now add another statement that will also execute via the onchange event
handler. Add this line of code:

this.selectedIndex=0;

10. Editor: Save lab7-3a.htm.

11. Browser: Open lab7-3a.htm. Your screen should resemble Figure 7-10.

Figure 7-10: Page for lab7-3a.htm after adding onchange event handler

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

12. Browser: Select an item from the drop-down menu. If you select the third item, you
should see an alert similar to Figure 7-11. If you do not, verify that the source code
you entered is correct.

Figure 7-11: Alert dialog box

13. Browser: Note that the drop-down menu does not hold the user's selection after
closing the alert dialog box. The drop-down menu should revert to its original state. If
it does not, verify that the this.selectedIndex=0 statement added in Step 9 is
correct.

In this lab, you scripted the function isSelected() to receive the contents of the form
on the page. Inside the function, you determined which option was selected from the
drop-down menu and reflected the option's value to the user. As with all form elements, it
is important to know how to access the value or text of an option chosen from a select
object.

This lab also demonstrated the onchange() event handler used to invoke a function. The
onchange() event handler was also used to invoke another line of JavaScript code. In
this case, the selectedIndex property of the select object is used to reset the drop-
down menu to its default state. Also, the programs were scripted to capture a single
selection from a select object.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 7-4: Working with a multiple-selection list box

1. Editor: Open lab7-4.htm file from the Lesson_7 folder of the Student_Files directory.

2. Editor: This file contains an XHTML form with a select object named mySelect.
The select object is created as a multiple-selection list box by adding the multiple
attribute in the <select> tag. A button object is scripted to call a function named
isSelected(). The argument this.form passes the form's name/value pairs to the
function. In the isSelected() function, two variables are created for you. The len
variable is used as in the previous lab. The variable theSelections will receive the
text of the user's choices.

3. Editor: Locate the comment that reads as follows:

// Create for loop

Create a for loop. Use a loop counter variable that starts at zero. Use the len variable
in the loop's logical expression. Inside the loop, determine whether a particular
option is selected. If an option is selected, use the theSelections variable to build a
string containing the text of the selected items. Add a newline character after the text
for each selection.

4. Editor: After the for loop, create an alert dialog box that displays the
theSelections variable.

5. Editor: Save lab7-4.htm.

6. Browser: Open lab7-4.htm. Your screen should resemble Figure 7-12.

Figure 7-12: Page for lab7-4.htm

7. Browser: Select several items from the list by pressing the CTRL button on your
keyboard while clicking each choice. Then click the Check Selections button. If the
third and sixth items were selected, you should see an alert dialog box similar to
Figure 7-13. If you do not, verify that the source code you entered is correct.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 7-13: Alert dialog box

8. Browser: Experiment with the page to ensure that the alert dialog box displays the
proper information in various situations.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 7-5: Conducting form validation

In this lab, you will use JavaScript to validate user input to an XHTML form.

1. Editor: Open the lab7-5.htm file from the Lesson_7 folder of the Student_Files
directory. The XHTML code is already included to create a form that resembles Figure
7-14.

Figure 7-14: Interactive form

2. Editor: A submit object is scripted to call a function named checkForm(). Examine
the function invocation statement:

<input type="submit" value="Submit Data" onclick="return
 checkForm(this.form);" />

3. Editor: Note the use of the return keyword. The checkForm() function will be
written to return either a true or a false value. If a true value is returned, the form
will be submitted. A false return value will cancel the form submission. The
argument this.form passes the form's name/value pairs to the function

4. Editor: In the checkForm() function, a variable is created for you. The len variable
is assigned the return value of the form object's length property. This variable will
be used in a for loop to determine how many times the loop will execute.

5. Editor: In the file, find the line that reads as follows:

//Insert for statement here//

Create a for loop. Use a loop counter variable that starts at zero. Use the len
variable in the loop's logical expression. Inside the for loop, create an if statement.
As the condition for the if statement, use the elements property of the form object
to determine if each form element's length is less than 1. If an element's length is less

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

than 1, the function's value will return false, which will ensure that the page does
not submit.

Tech Note: Another way to check for data in a field is to determine if the form element is
null or empty, instead of checking for length. Remember that null and empty are not the
same. An entered space is empty, whereas no data entered whatsoever is null. When
checking for length, an entered space (empty) will count as a number because a space
is a character. Checking for a length is the more typical approach.

6. Editor: If the form element is null (no data), create an alert dialog box that asks the
user to enter information in the appropriate form element. (Hint: Use the name
property of each element in the argument for the alert() method.) Then use the
focus() method to place the user's cursor in the appropriate form element. Finally,
create a return false statement. This statement will be returned to the function
invocation statement and will cancel submission of the form if the function value
returns false (for null data). Close the if statement. Close the for loop.

7. Editor: After the for loop, create a return true statement. This statement will
execute only if all form elements pass the validation test.

8. Editor: Save lab7-5.htm. The code should now appear as follows with your changes,
shown in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 7-5</title>
</head>

<script type="text/javascript">
 function checkForm()
 {
 var str = '';
 var elem = document.getElementById('myForm').elements;
 for(var i = 0; i < elem.length; i++)
 {
 if(elem[i].value.length < 1)
 {
 alert("Enter something for the field: " + elem[i].name);
 var mytext = document.getElementById(elem[i].name);
 mytext.focus();
 return false;}
 }
 }
</script>
</head>

<body>
<h3>CIW JavaScript Specialist</h3>
<hr />

<form id="myForm" name="myForm" action="lab7-5a.htm">
<p>
Your Name:

<input type="text" name="Your_Name" value="enter your name" />
</p>
<p>
Interesting Fact About You:

<textarea name="Interesting_Fact">enter some text</textarea>
</p>
<input type="submit" value="Submit Data" onclick="return
checkForm(this.form);" />

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

</form>

<hr />
<div id="lblValues"></div>
</body>
</html>

9. Internet Explorer Browser: Open lab7-5.htm in Internet Explorer. Your screen
should resemble the preceding figure (Figure 7-14). Delete the text from the Name
text box. Click the Submit Data button without entering any data in the form, not
even a space. You should see an alert dialog box similar to Figure 7-15. If you do not,
verify that the source code you entered is correct.

Figure 7-15: Alert dialog box

10. Browser: After closing the alert dialog box, your cursor should be in the Name text
box. If it is not, verify that the source code you entered is correct.

Tech Note: Perform this lab using Internet Explorer as your browser. When you are
finished, you can try it again using Firefox or another browser. Notice that the script
may not work as expected in other browsers. This is an example of how JavaScript
code often renders differently in different browsers, and it provides a reminder of the
importance of testing your pages in multiple browsers.

11. Browser: Experiment with the form to ensure that the proper alert dialog boxes
appear for each situation. Ensure that the user's cursor is in the proper text box if
the text box is left empty.

 Tech Note: Also notice that after submitting information correctly, the fields appear to
reset to the defaults. But in fact, the page has reloaded to the next file (lab7-5a.htm)
because that file name is specified in the action attribute of the <form> tag
(action="lab7-5a.htm"), instead of posting the form data to a server.

12. Editor: Open lab7-5a.htm. Notice the additions of the following code and the
changes to the getElementById method, shown in bold:

<script type="text/javascript">
 function checkForm()
 {
 var str = '';
 var elem = document.getElementById('myForm').elements;
 for(var i = 0; i < elem.length; i++)
 {

 str += "Type:" + elem[i].type + " ";
 str += "Name:" + elem[i].name + " ";
 str += "Value:" + elem[i].value + " ";
 str += "
";

 if(elem[i].value.length < 1)
 {

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

 alert("Enter your name for the field: " + elem[i].name);
 return false;}
 }
 document.getElementById('lblValues').innerHTML = str;
 }
</script>

14. Browser: Open lab7-5a.htm. Enter some information into both fields, and click the
Submit Data button. Notice the information that you enter (or the default text if you
do not change it) appears at the bottom of the page after you click the Submit Data
button, as shown in Figure 7-16. As the form loops through the for loop, the
program extracts the name and value of each field. It is important to note that the
button properties are also shown in this information because the buttons are also
form elements.

Figure 7-16: Page for lab7-5a.htm after submitting data

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 8-1: Performing client-side browser detection

In this lab, you will write a script that performs both basic and advanced browser
detection. Most sites in the present time will check the type of browser the client is using
first, and then redirect the user to the pages that have been optimized for the browser.
Unfortunately, malicious scripters will specifically look for an exploitable browser (this is
called zero-day vulnerability) and take advantage of it before the virus protection or
browser vendor has a chance to create and distribute a patch.

1. Editor: Open the file lab8-1.htm. This file provides the shell of a page you will
further develop.

2. Editor: Find the comments the direct you where to place the JavaScript code. In that
location, enter the following code (provided in the file lab8-1code.htm):

<script type="text/javascript">
mactest=(navigator.userAgent.indexOf("Mac")!=-1) //My browser sniffers

is_chrome = navigator.userAgent.toLowerCase().indexOf('chrome') > -1

Netscape=(navigator.appName.indexOf("Netscape") != -1)

msafari=(navigator.userAgent.indexOf("Safari")!= -1)

wsafari=0; if(!mactest&&msafari){wsafari=1;msafari=0}

is_opera = 0; if(window.opera){is_opera=1}

is_ie_mac = 0; is_ie=0;if(document.all){is_ie=1}

if(is_ie&&mactest){is_ie_mac=1}

alert("mactest:"+mactest+", Netscape:"+Netscape+", wsafari:"+wsafari+",
msafari:"+msafari+", is_ie:"+is_ie+", is_ie_mac:"+is_ie_mac+",
is_opera:"+is_opera+", is_chrome:"+is_chrome)
</script>

3. Editor: Save the file lab8-1.htm.

4. Browser: Open the file lab8-1.htm. You will see a pop-up window similar to the one
shown in Figure 8-1.

Figure 8-1: Pop-up describing browser type detected

5. Browser: Notice that this pop-up lists several browser types, and gives a value after
each type. The browser type you are using will be specified by a value of true (or a
Boolean value of 1); all the browser types that were not detected will show values of
false (or Boolean 0). This alert does not provide user-friendly readability, but rather a
raw data string that would be used further in a program. This script identifies the
type of browser you are using, but it does nothing further with this information.
Many Web sites use the detection information to legitimately enhance your

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

experience by automatically directing you to pages that are optimized for your
browser.

6. Editor: Open lab8-1a.htm. Find the comments that direct you where to place the
JavaScript code. In that location, enter the following code (provided in the file lab8-
1a_code.htm) as shown in bold, then save the file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 8-1a</title>
</head>

<body>
<script language="javascript" type="text/javascript">
<!--
 // write out some introductory blurb and begin the table.

 document.writeln('<h3>CIW JavaScript Specialist</h3><hr />');

 document.writeln('<table width=470 align=center><tr><td><p
class="narrow">' +
 'The table below shows the principal properties of your '
+
 'browser, the name by which it identifies itself, and ' +
 'the plug-ins supported. The final part of the table ' +
 'lists all the document types for which a plug-in has ' +
 'been defined, together with the name of the plug-in ' +
 'that handles each type. Types for which no plug-in is '
+
 'available are not shown.<' + '/p><hr /><' +
 '/td><' + '/tr><' + '/table>');

 document.writeln('<table cellpadding=2 cellspacing=1 border=0 ' +
 'width=470 align=center><tr>');
 document.writeln('<th width=100 align=left class="small"' +
 'bgcolor="#666699">Property<' + '/th>');
 document.writeln('<th width=100 align=left class="small"' +
 'bgcolor="#666699">Variable<' + '/th>');
 document.writeln('<th width=100 align=left class="small"' +
 'bgcolor="#666699">Value<' + '/th><' + '/tr>');

 // set up the variables we need to test the first few properties

 var number_of_values_to_test = 4;
 var name_array = new Array(number_of_values_to_test);
 var properties = new Array(number_of_values_to_test);
 name_array[0] = "Application Name";
 properties[0] = "appName";
 name_array[1] = "Code Name";
 properties[1] = "appCodeName";
 name_array[2] = "Version";
 properties[2] = "appVersion";
 name_array[3] = "User Agent";
 properties[3] = "userAgent";

 // Loop through the properties, outputting one table row for each one.

 for (var index=0;index < number_of_values_to_test;index++) {
 document.write('<tr><td bgcolor="#9999cc" align=left class="small">' +
 name_array[index] + '<' + '/td>');
 document.write('<td bgcolor="#ccccff" class="small">' +
properties[index] +
 '<' + '/td>');
 document.write('<td bgcolor="#ccccff" class="small">' +

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

 navigator[properties[index]] + '<' + '/td>');
 document.writeln('<' + '/tr>');
 }

 // Write out details about the user's installed plug-ins

 document.write('<tr><td bgcolor="#9999cc" align=left class="small">Plug-
Ins<' +
 '/td>');
 document.write('<td bgcolor="#ccccff" class="small">plugins<' + '/td>');
 document.writeln('<td bgcolor="#ccccff" class="small">');
 if (navigator.plugins != null) {
 for (var index=0;index < navigator.plugins.length; index++) {
 document.writeln(navigator.plugins[index].name + '
');
 }
 }
 else {
 document.writeln("Browser doesn't recognize " +
 "'navigator.plugins' property.");
 }
 document.writeln('<' + '/td><' + '/tr>');

 // Do the same for the MIME types. This is more complex because we need to
 // build a subtable within our main table, showing the types, their names
 // and extensions, and the plug-in assigned to them.

 document.write('<tr><td bgcolor="#9999cc" align=left class="small">' +
 'MIME Types<' + '/td>');
 document.write('<td bgcolor="#ccccff" class="small">mimeTypes<' + '/td>');
 document.writeln('<td bgcolor="#ccccff" class="small">');
 if (navigator.mimeTypes != null) {
 document.writeln('<table>');

 document.writeln('<tr bgcolor="#9999cc">' +
 '<th class="small" align=left bgcolor="#9999cc">' +
 'mime type<' + '/th>' +
 '<th class="small" align=left bgcolor="#9999cc">' +
 'identifier<' + '/th>' +
 '<th class="small" align=left bgcolor="#9999cc">' +
 'extn.<' + '/th>' +
 '<th class="small" align=left bgcolor="#9999cc">' +
 'plug-in<' + '/th><' + '/tr>');

 for (var index=0;index < navigator.mimetypes.length; index++) {
 if (navigator.mimetypes[index].enabledplugin != null) {
 document.write('<tr><td class="small" valign=top>' +
 navigator.mimetypes[index].type +
 '<' + '/td><td class="small" valign=top>' +
 navigator.mimetypes[index].description +
 '<' + '/td><td class="small" valign=top>' +
 navigator.mimetypes[index].suffixes +
 '<' + '/td><td class="small" valign=top>' +
 navigator.mimetypes[index].enabledplugin.name +
 '<' + '/td><' + '/tr>');
 }
 }
 document.writeln('<' + '/table>');
 }
 else {
 document.writeln("Browser doesn't recognize " +
 "'navigator.mimeTypes' property.");
 }
 document.writeln('<' + '/td><' + '/tr>');

 // finish up the table.

 document.writeln('<' + '/table>');
// -->

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

</script>

</body>
</html>

7. Editor: Save the file lab8-1a.htm.

8. Browser: Open the file lab8-1a.htm to run the script. You should see the page
shown in Figure 8-2 with information about your browser. Notice that this script is
using standard JavaScript to identify a host of information about your browser.

Tech Note: Be sure to view this file in multiple browsers. You will see plug-in
information in Firefox.

Figure 8-2: Table detailing your browser properties

From a security point of view, consider that this script reveals a significant portion of
your browser information. Although this may be useful for determining browser
compatibility, it could also provide a hacker with enough information about your system
to stage an attack.

This demonstration is a reminder that no computer or server is 100-percent safe.
However, by keeping your browser, operating system and anti-virus software current, you
can dramatically decrease the chances that your system or server will be compromised.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 8-2: Locking the browser with malicious code

In this lab, you will observe JavaScript used to lock a user's browser.

1. Editor: Open the file lab8-2.htm from the Lesson_8 folder of the Student_Files
directory.

2. Editor: Examine the following source code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/><title>Lab 8-2</title>

<script language="JavaScript" type="text/javascript">
<!--

for (i=0; i >= 0; i++) {
 alert("Stop me if you can!");
}

//-->
</script>
</head>
<body>
This page demonstrates poorly written or malicious JavaScript code that locks
the browser.
</body>
</html>

3. Editor: Close lab8-2.htm.

4. System: Close any open programs.

5. Browser: Open lab8-2.htm. You will see an alert dialog box as shown in Figure 8-4.

Figure 8-4: Alert dialog box

6. Browser: You can click the OK button repeatedly, but the message will return.

7. System: To stop execution of this script, you must close the browser. To do this, hold
down the CTRL + ALT keys and press the DELETE key on your keyboard. This action will
open a dialog box similar to Figure 8-5.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 8-5: Close Program menu

8. System: Verify that the Internet Explorer task (or whichever browser you are using)
is selected. Click the End Task button to close the browser. You will see the message
shown in Figure 8-6.

Figure 8-6: End Task message

9. System: Click End Now to complete the operation. You have now closed your
browser with no damage done.

10. Editor: The browser lock is caused by an infinite loop in the for statement. This sort
of loop is typical when a developer is first learning to script loops, but it is rarely
found in production, because it is simple to stop and easy to fix. An infinite loop has
no conditions for ending. You can correct it by creating a condition that will cause
the program to finish the loop. Open the file lab8-2.htm. In the script section, change
the code as shown in bold, then save the file:

<script language="JavaScript" type="text/javascript">
<!--

var i=0;

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

for (i=0;i<=5;i++)
{
alert("The number is " + i);
}

//-->
</script><body>
<h3>CIW JavaScript Specialist</h3>
<hr />
This page demonstrates repaired JavaScript code that will no longer loop
infinitely.
</body>

11. Browser: Open the file lab8-2.htm. You should see that the alert box counts up and
then stops as expected at the number 5. You have now performed your diligent
troubleshooting and corrected the code to remove the infinite loop.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 8-3: Setting, viewing and clearing a cookie with JavaScript

In this lab, you will set a cookie, delete a cookie and retrieve cookie values, which you can
apply to an X/HTML document.

1. Editor: Open the file lab8-3.htm from the Lesson_8 folder of the Student_Files
directory. Study the <script> portion of the code in the <head> section of the file,
which appears as follows. This is where the cookie is created:

<script language="JavaScript" type="text/javascript">
<!--
 var myColor = prompt("Please enter a hexadecimal color code (must be 6
characters, including 0 thru 9 and A thru F):","FFFFFF");
 var myName = prompt("Please enter your name:","Cookie Monster");
 if ((myColor == null) || (myColor == "") || (myColor.length < 6 ||
myColor.length > 6)) myColor = "#ffffff";
 var keepCookie = (confirm("A cookie will be set. Delete cookie?")) ?
"delete" : "keep";
 if (keepCookie == "delete") {
 document.cookie="testCookie=" +"YColor=" + myColor + " " + "name=" +
myName + ";expires=20-May-2010";
 message= "Here is the cookie that was deleted: ";
 message += document.cookie;
 alert(message);
 }
 else {
 document.cookie="testCookie=" +"YColor=" + myColor + " " + "name="
+ myName + ";expires=20-May-2015";
 message= "Here is the cookie that was set on your system: ";
 message += document.cookie;
 alert(message);
 }

 var start = document.cookie.indexOf("YColor=");
 start=start + 7;
 var pos = "#" + document.cookie.substr(start,6);
 alert("Your background color will be: " + pos);

 var nameLengthS = document.cookie.indexOf("name=");
 nameLengthS=nameLengthS + 5;
 var PersonName = document.cookie.substr(nameLengthS,25);
 alert("Your name is: " + PersonName);

//-->
</script>
</head>

2. Editor: Now examine the following code after the <body> tag in the file, which will
display the cookie contents:

<body>
<h3>CIW JavaScript Specialist</h3>
<hr />
<script language="JavaScript" type="text/javascript">
<!--
 if ((pos == null) || (pos == "")) pos = "#ffffff";
 document.bgColor = pos;
 document.write("Your background color is: " + document.bgColor +
"
");
 document.write("Your name is: " + window.PersonName + "
");
 document.write("Cookie contents: " + document.cookie);
 document.write();
//-->
</script>

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

</body>
</html>

3. Editor: Save lab8-3.htm.

4. Internet Explorer Browser: Open lab8-3.htm in Internet Explorer.

5. Internet Explorer Browser: You should first see a prompt dialog box asking for a
color. You need to supply the color in hexadecimal code, as described in the prompt.
The default is #FFFFFF, which is white. (Some example colors are #FF0000 for red,
#00FF00 for green, and #0000FF for blue.)

6. Internet Explorer Browser: The next dialog will ask you to enter your name. After
you enter a name and click OK, you will see a dialog advising you that a cookie will
be set when you proceed, and asking if you would rather delete it, as shown in Figure
8-16.

Figure 8-16: Dialog asking whether to delete cookie

7. Internet Explorer Browser: For this step, click Cancel to allow the cookie to be set.
The next message, as shown in Figure 8-17, will specify the cookie you just accepted
based on your answers to the questions.

Figure 8-17: Cookie accepted

8. Internet Explorer Browser: Click OK to continue. You will see two more dialogs
specifying the name and color you entered, then you will see a landing page that
resembles Fig 8-18 and uses the background color you entered.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 8-18: Landing page for lab8-3.htm

9. Internet Explorer Browser: Reload the file. Repeat Steps 5 and 6 by entering the
same information, but this time, when asked if you want to delete the cookie, click
OK to delete it. You will see the dialog shown in Figure 8-19.

Figure 8-19: Cookie deleted

10. Internet Explorer Browser: Click OK or Yes. This sets the expired cookie, which
replaces (deletes) the existing cookie with the same name. Because this new cookie
has an expired date, it is automatically deleted from your system when you restart
Internet Explorer.

11. Internet Explorer Browser: Click OK to continue. The cookie is gone. You will see
the same dialogs recapping your entries, then the same landing page that specifies
your information.

12. Firefox Browser: Open lab8-3.htm in Firefox, and perform the same steps to accept
the cookie. It should perform as it did in Internet Explorer. However, when you click
OK to delete the cookie, notice that no cookie information appears in the prompts or
the final page. The reason for this is that Firefox disposes of the cookie immediately;
it will not run the expired cookie at all. By contrast, Internet Explorer will retain the
expired cookie for the session, displaying its information now, then delete it when you
close the browser.

In this lab, you learned how to set a cookie. You also learned that an easy method for
deleting a cookie is to replace it with an expired one.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 8-4: Setting passwords with cookies

In this lab, you will use a cookie that allows access to a second XHTML page. If the cookie
is present in the password-protected page and the user enters the correct password
value, then the user will be allowed to view the page. If the password is incorrect, the
user will be returned to the previous page.

1. Editor: Open the lab8-4.htm file from the Lesson_8 folder of the Student_Files
directory.

2. Editor: Scroll down in the source code and examine the following code:

<form name="myForm" id="myForm">
<input type="text" name="pWord" />
<p>
<input type="button" value="Submit" onclick="storePass(this.form);" />
<input type="Reset" />
</p>
</form>

3. Editor: Locate the existing <script> tags in the <head> section of the document.
Locate the comment that reads as follows:

// Create cookie here

Create a cookie named password and assign as its value the user's entry in the
pWord text box.

4. Editor: The following code shows the storePass() function before your changes:

<script language="JavaScript">
<!--
function storePass(form) {
 // Create cookie here

 alert(document.cookie);
 location.href = "lab8-4a.htm";
}
//-->
</script>

5. Editor: Save lab8-4.htm.

6. Editor: Open lab8-4a.htm from the Lesson_8 folder of the Student_Files directory.
Examine the following code in the <head> section of the file:

<script language="JavaScript">
<!--
all = document.cookie;
if (all.indexOf("password=hello") != -1){
 alert("You entered the correct password. Proceed.");
} else {
 alert("Incorrect password. Return and re-enter.");
 location.href = "lab8-4.htm";
}

//-->
</script>

7. Editor: Close lab8-4a.htm.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

8. Browser: Open lab8-4.htm. Your screen should resemble Figure 8-20.

Figure 8-20: Page for lab8-4.htm

9. Browser: Enter the password hello and click the Submit button. This calls the
storePass() function that stores your password into a cookie. Accept the cookie (if
you are warned). You should then see the alert dialog box shown in Figure 8-21.

Figure 8-21 Alert dialog box

10. Browser: The alert shows the password name=value pair that you entered in the
page. (It may also show information from a previous cookie used in another lab; that
information will disappear after the associated cookie is cleared from memory.) Click
OK to continue. You should see another alert with the cookie's name=value pair, and
then the alert dialog box shown in Figure 8-22.

Figure 8-22: Alert dialog box

11. Browser: Click OK to continue. You will see the password-protected page, as shown
in Figure 8-23.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 8-23: Password-protected page (lab8-4a.htm)

12. Browser: To ensure that your script works for both correct and incorrect passwords,
click the Return link to return to the previous page.

13. Browser: Enter an incorrect password and click the Submit button. After the alert
displaying the cookie's name=value pair, you should see the message shown in
Figure 8-24.

Figure 8-24: Alert dialog box

14. Browser: Click OK to continue. Rather than seeing the password-protected page (file
lab8-4a.htm), you should be returned to the page where you entered your password
(file lab8-4.htm).

Tech Note: This lab is for demonstration purposes only. Any sensitive content in a Web
application should not be protected with the mechanism shown in this lab.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 9-1: Creating a custom object

In this lab, you will create and instantiate a custom object. You will then write code to
display data pertaining to the custom object.

1. Editor: Open the lab9-1.htm file from the Lesson_9 folder of the Student_Files
directory.

2. Editor: Locate the comment that reads as follows:

// Complete the employeeObject constructor

3. Editor: Complete the employeeObject constructor function that has been started for
you. Add the properties that you see listed in the employeeObject constructor
signature. Also add a method named showEmployee.

4. Editor: Locate the comment that reads as follows:

// Instantiate 3 instances of employeeObject

5. Editor: Instantiate three instances of employeeObject. Use the employees array
that has been declared for you. Note that the first element of the employees array
has already been defined. Make sure you start your array index numbers with 1 for
the first employee. The values for the employeeObject properties have been provided
for you.

6. Editor: Locate the comment that reads as follows:

// Complete the showEmployee() function

7. Editor: Complete the showEmployees() function. Use the info variable that has
been declared for you. Use the += operator to build a string containing the text
Employee:, Department: and Extension: with the appropriate employeeObject
data concatenated in the appropriate locations. Concatenate a line break character
after the name and department information.

8. Editor: An alert() method has been defined in the showEmployees() function that
will display the info variable.

9. Editor: Examine the rest of the code, then save lab9-1.htm.

10. Browser: Open lab9-1.htm. Your screen should resemble Figure 9-7.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 9-7: Page for Lab9-1.htm

11. Browser: Select the first name from the drop-down menu. You should see an alert
dialog box as shown in Figure 9-8. If you do not, check the code you entered in the
lab9-1.htm file.

Figure 9-8: Alert displaying employee information

12. Browser: Click the Show All Employees button. You should see an alert dialog box
as shown in Figure 9-9.

Figure 9-9: Alert showing all employees

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

13. Browser: Test all the names in the drop-down menu. Ensure that the proper
information is displayed for each employee. If the proper data is not displayed, check
the code you entered in the lab9-1.htm file.

In this lab, you gained hands-on experience in creating, instantiating and displaying the
data for a JavaScript custom object. You added code to a constructor function to make it
a template for your custom objects. You added code to instantiate instances of your
custom object, populating the object's properties with actual values. You also added code
that extracted and displayed the data from your custom object.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 10-1: Redirecting a page based on user input with getElementById

In this lab, you will direct users to a Web page based on their input, create a global
variable, and use the getElementById method in conjunction with radio buttons.

1. Editor: From the Lesson 10 folder in your student lab files, open lab10-1.htm. Study
the code in the file, which should match the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 10-1</title>

<script type="text/javascript">
<!--
function changeButton()
{
 if(document.getElementById('radiobuttonWebdev').checked === true)
 {
 radioButton = document.getElementById('radiobuttonWebdev').value;
 var header = document.getElementById('radiobuttonWebdev').value.innerHTML
= "Web Developer!";
 alert("Hello " + header);
 }
 if(document.getElementById('radiobuttonGovernment').checked === true)
 {
 radioButton = document.getElementById('radiobuttonGovernment').value;
 var header = document.getElementById('radiobuttonWebdev').value.innerHTML
= "Uncle Sam!";
 alert("Hello " + header);
 }
 getTest();
}
-->
</script>
</head>

<body>
<h3>CIW JavaScript Specialist</h3>
<hr />
<form>
<p>Please select your favorite type of Web site:</p>
<input id="radiobuttonWebdev" type="radio" name="group1"
value="Web_Development" checked>Web Development</input>

<input id="radiobuttonGovernment" type="radio" name="group1"
value="Government">Government</input>

<input id="a" type="radio" name="group1" value="A"> A </input>

<input id="b" type="radio" name="group1" value="B"> B </input>

<input id="c" type="radio" name="group1" value="C"> C </input>

<script type="text/javascript">
<!--
function getTest()
{
 document.write("<h3>CIW JavaScript Specialist</h3>");
 document.write("<hr />");

 if(radioButton == "Web_Development")
 {

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

 document.write("<p>Here's a great site for Web developers:</p>CIW Certified");
 }
 if(radioButton == "Government")
 {

 document.write("<p>Here's a great site if you're interested in U.S.
government:</p>The White House");
 }
}
-->
</script>
<p>
<input type="button" onclick="changeButton()" value="Click Here" />
</p>
</form>
</body>
</html>

2. Browser: Now open the file lab10-1.htm in your browser. It should resemble Figure
10-1.

Figure 10-1: Page for lab10-1.htm

3. Browser: Select the first or second option (Web Development or U.S. Government)
and click the button. You will be redirected to page with a link related to your choice.

4. Consider the following points about this code:
• You can create a global variable in JavaScript by assigning the variable to the

window. When you do this, the variable is assigned to the entire window and not
just to the function it is in. This practice is especially useful when using multiple
functions.

• When you look over the code, take careful note of the case-sensitivity of the
methods. The most common error made in JavaScript programming is neglecting
to verify and follow proper case-sensitivity.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

5. Editor: Open the lab10-1.htm file. Notice the "a", "b" and "c" id values in the radio
button code. Replace these with some of your favorite Web sites. Be sure to watch
your letter case. Save the file after making changes to it.

6. Editor: For each redirect page, create an entire Web page from it using the
document.write statements, as well as other useful items such as images and
headings. You have learned to do this in previous lessons. Save the file.

7. Browser: Open your new file in at least two different browsers and test to see if your
script works as expected.

This lab demonstrated some skills you will use throughout your Web development career.
You used the getElementByID method to gather input. You also learned a way to set global
variables by simply assigning the window property to a variable. This allows the variable
to be used in other functions, not just the function in which it was created and
manipulated. Of course, you can still create global variables by creating a variable
outside of a function, but this will reset to the default with each different function.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 10-2: Changing the DOM using getElementsByName

In this lab, you will use the getElementsByName method to grade a quiz. Typically, after
the quiz is graded, the scores would be uploaded to a database. Remember that array
elements begin with the number 0.

1. Editor: Open file lab10-2.htm. Study the code, which appears as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 10-2</title>

 <script type="text/javascript">
function getValues(objName)
{
 var rightanswers=0;
 var txt=document.getElementsByName("txtField");
 if(txt[0].value == "javascript")
 {alert("You got Question 1 right")
 rightanswers++;
 };
 }
</script>
</head>

<body>
<h3>CIW JavaScript Specialist</h3>
<hr />
<p>
Which certification are you seeking?
</p>
<p>
<select name="txtField" id=Text1>
 <option value="javascript">JavaScript Specialist</option>
 <option value="canoeing">Extreme Canoeing</option>
 <option value="moviemaking">Movie Production</option>
</select>
</p>
<p>
Which organization awards the certification?
</p>
<p>
<select name="txtField" id=Text2>
 <option value="CIW">CIW</option>
 <option value="YMCA">YMCA</option>
 <option value="DGA">DGA</option>

</select>
</p>
<p>
What is the best grade you can score?
</p>
<p>
<select name="txtField" id=Text3>
 <option value="100">100</option>
 <option value="B">B</option>
 <option value="pass">Pass</option>
</select>
</p>
<p>

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

<input id="Button1" type="button" value="submit"
onclick="getValues('txtField')" />
</p>
</body>
</html>

2. Browser: Now open file lab10-2.htm in your browser to run the code. Your page
should resemble Figure 10-3. Select answers to the questions, then click the Submit
button to check your answers. You will find that only the first question gets scored.

Figure 10-3: Quiz page for lab10-3.htm

3. Editor: After the if statement that scores Question 1, enter the proper code to grade
Questions 2 and 3. The correct answers are CIW and 100, respectively. Also add a
document.write statement that will show the user's score on a new page. Try this step
first on your own. The correct code follows in bold:

if(txt[0].value == "javascript")
 {alert("You got Question 1 right")
 rightanswers++;
 };
if(txt[1].value == "CIW")
 {alert("You got Question 2 right")
 rightanswers++;
 };
if(txt[2].value == 100)
 {alert("You got Question 3 right")
 rightanswers++;
 };
document.write
document.write("You got " + rightanswers + " out of 3 answers correct");

4. Browser: Test your page in the browser after completing your code. Notice that you
see an alert for questions that you answer correctly. Your score page should resemble
Figure 10-4.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 10-4: Score page generated by document.write

5. Editor: Remember that this function runs after the page has rendered, so
document.write will overwrite the current information (the quiz page) with the single
line of text you specified, but no other page elements. However, you can use the
document.write to ensure a full page for users to view, instead of just a single
statement. When time permits, code a full page for the document.write. Be sure to
properly format the <html>, <body> and <title> tags.

In this lab, you used a very powerful command — getElementsByName — and you learned
how it can be used to separate data using an array.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 10-3: Getting, setting and removing X/HTML attributes

In this lab, you will modify X/HTML attributes using the getAttribute, setAttribute and
removeAttribute methods.

1. Editor: Open the file lab10-3.htm.It is the same code from the previous example.

2. Editor: Edit the script by adding the code shown in bold, then save the file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Example: Getting Attributes</title>
</head>
<body>

<h3>CIW JavaScript Specialist</h3>
<hr />
<div id="SetDiv" special_attribute="CIW rules!" align="left">
<p>What are the attributes of this div tag?</p>
</div>
<input type="button" value="Press Me!" onclick="getValues()" />
<p>Please click the button</p>
 <script type="text/javascript">
 var div = null;
 function getValues()
 {
 if (div == null)
 {
 div = document.getElementById("SetDiv");
 }
 alert(div.id);
 alert(div.special_attribute);
 alert(div.align);
 changeValues();
 }
 function changeValues(){
 if (div == null) {
 div = document.getElementById("SetDiv");
 }
 var d = document.getElementById("SetDiv");
 d.setAttribute("align", "center");
 alert(div.align);
 RemoveValues();
 }
 function RemoveValues(){
 if (div == null) {
 div = document.getElementById("SetDiv");
 }
 var d = document.getElementById("SetDiv");
 d.removeAttribute("align");
 alert(div.align);
 ChangeValuesBack();
 }
 function ChangeValuesBack(){
 if (div == null) {
 div = document.getElementById("SetDiv");
 }
 var d = document.getElementById("SetDiv");
 d.setAttribute("align", "left");
 alert(div.align);

}

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

 </script>
</body>
</html>

3. Browser: Run this script in Internet Explorer. The alert boxes will show you where
the attributes were changed, removed and reset. You can see the page content
change as the attributes change where the text between the <div></div> tags
dynamically moves to the center, as shown in Figure 10-7.

Figure 10-7: Page content with attributes accessed and set

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 11-1: Loading a JavaScript library and running a library script

In this lab, you will load jQuery in your X/HTML page and test it with a basic command.
A jQuery library script is an external file so it needs to be linked to the X/HTML file via
the <script> tag's src attribute. The src attribute indicates that the jQuery library script
has been placed in the same directory as the X/HTML page.

1. Editor: From your Lesson_11/Lab11-1 folder, open the lab11-1.htm file.

2. Editor: Study the contents of this file. This is a copy of the full directory from the
jQuery library that includes all dependent files so they are easy to find. It is good
practice to use the entire library directory for this so you do not miss any files or
pages your code might need.

Tech Note: You never make changes to the library file. You simply attach this file to
your X/HTML page as a reference for the portions of code that you actually use. The
library file is a foundation for its scripts, and it provides your page with a syntax
grammar so your page knows how to process the specific script(s) that you use. The
specific script is attached to your X/HTML page in a separate file.

3. Editor: In the <head> section, enter the following <script> tag shown in bold, then
save the file. This line of code will link the jQuery library to the X/HTML page:

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery-1.4.4.min.js" type="text/javascript" charset="utf-
8"></script>
<title>Lab 11-1</title>
</head>

4. Editor: Enter the following code after the opening <body> tag, then save the file:

<body>
<h2>Resize your text with jQuery</h2>
<input type="button" value="Larger" id="large" />
<input type="button" value="Smaller" id="small" />
<p>You can enlarge or shrink the font size of text on your X/HTML page using
this script, as long as the text is within the paragraph tags.</p>
This is outside the paragraph tags and will not change!

5. Editor: Create a file named script.js and place it in the same directory as your
lab11-1.htm file. The script.js file is where you will place and save the jQuery
commands that you want to use in your page. Having a script.js file is useful to help
you store and organize the library code you use, and to reuse the code if you have the
opportunity.

6. Editor: Enter the following code into the script.js file, then save the file:

 $(function(){
 $('input').click(function(){
 var ourText = $('p');
 var currFontSize = ourText.css('fontSize');
 var finalNum = parseFloat(currFontSize, 10);
 var stringEnding = currFontSize.slice(-2);
 if(this.id == 'large') {
 finalNum *= 1.2;
 }
 else if (this.id == 'small'){
 finalNum /=1.2;

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

 }
 ourText.css('fontSize', finalNum + stringEnding);
 });
 });

This code comes from the jQuery library. Consider some of this code's notable
functions:

• The $(function()keyword tells the interpreter that this is a jQuery script.

• The var ourText = $('p'); statement tells the interpreter that this script will
work only on the <p> tag.

• The program does the text resizing with this portion of the code, by increasing or
decreasing the font size by 1.2 when the appropriate button is clicked (note the
ID of the button):

 if(this.id == 'large') {
 finalNum *= 1.2;
 }
 else if (this.id == 'small'){
 finalNum /=1.2;
 }

Tech Note: The dollar sign ($) is an alias for jQuery. Although you can use the $ sign for
other things in code, it is standard syntax for jQuery. Most jQuery scripts use $ signs
for the variables that they implement.

7. Editor: Open the lab11-1.htm file. Add the following code (shown in bold)
underneath the existing <script></script> section that references the jQuery
directory, then save the file. This line places a reference to the script file you just
created:

<script src="jquery-1.4.4.min.js" type="text/javascript" charset="utf-8">
</script>
<script src="script.js" type="text/javascript" charset="utf-8">
</script>
<title>Lab 10-1</title>

8. Browser: Open the file lab11-1.htm to run the script. Click the Larger and Smaller
buttons, and you will see the text that was formatted within the <p></p> tags grow
and shrink on the fly. This is just the beginning of the power of libraries.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 11-2: Using CSS and JavaScript to create a basic slideshow

In this lab, you will use jQuery to interact with both JavaScript and CSS to create a basic
slideshow. You will load two external scripts. The first one is the jQuery library, and the
second one is the script.js file that you will create. You will also reference a third file: a
Cascading Style Sheets (CSS) file that will apply formatting to the page.

1. Editor: Open the lab11-2.htm file from the Lesson_11/Lab11-2 folder of your
student files.

2. Editor: Create a blank file called script.js.

3. Editor: Enter the following code as shown in bold in the <head></head> section,
then save the file:

<link rel="stylesheet" href="css.css" type="text/css" media="screen"
charset="utf-8"/>
<script src="jquery-1.4.4.min.js" type="text/javascript" charset="utf-
8"></script>
<script src="script.js" type="text/javascript" charset="utf-8"></script>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

Reminder: This code creates the references to the jQuery library file and the script file
you are creating, respectively. The reference to the jQuery library provides the basic
syntax rules that are necessary to run a script from the jQuery library. The script file
you create will use jQuery code.

4. Editor: Open the file css.css. The code is as follows:

@charset "utf-8";
/* CSS Document */
#slideshow {
 position:relative;
 height:350px;
}
#slideshow IMG {
 position:absolute;
 top:0;
 left:0;
 z-index:8;
}

#slideshow IMG.active {
 z-index:10;
}

#slideshow IMG.last-active {
 z-index:9;
}

5. Editor: Study this code. The portion that bears mention is the z-index, which is a
CSS property that sets the stack order of specific elements. An element with greater
stack order always appears on the Web page in front of another element with lower
stack order. Basically, this sets up images on a Web page like the pages in a book, in
which one is over the other, which is over the next, for as many as there are. In this
manner, only one image will be seen at a time —the top image as determined and
sequenced by the z-index.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

6. Editor: Enter the following code as shown in bold into the script.js file, then save the
file:

function slideSwitch() {
 var $active = $('#slideshow IMG.active');

 if ($active.length == 0) $active = $('#slideshow IMG:last');

 var $next = $active.next().length ? $active.next()
 : $('#slideshow IMG:first');

 $active.addClass('last-active');

 $next.css({opacity: 0.0})
 .addClass('active')
 .animate({opacity: 1.0}, 1000, function() {
 $active.removeClass('active last-active');
 });
}

$(function() {
 setInterval("slideSwitch()", 5000);
});

This script works by calling a method called slideSwitch() every 5 seconds. The
slideSwitch() method takes the active image and rotates it to the bottom of the stack,
then activates the next image at the top of the stack, allowing it to be viewed. This
function will cycle for as long as it is in the browser.

7. Browser: Open the file lab11-2.htm. When the script runs, you will see the images
rotate every 5 seconds.

In this lab, you used the jQuery library to help you create a basic slideshow that uses
JavaScript and CSS. To create this program from scratch with JavaScript would have
taken many hours of trial and error. But with jQuery's help, this can be done in less than
an hour, with bug-free code.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 11-3: Loading, testing and editing a library plug-in

In this lab, you will load, test and edit a jQuery plug-in that validates form fields.

1. Editor: Open the file lab11-3.htm. Study the code, which appears as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 11-3</title>
<style type="text/css">
* { font-family: Verdana; font-size: 96%; }
label { width: 10em; float: left; }
label.error { float: none; color: red; padding-left: .5em; vertical-align:
top; }
p { clear: both; }
.submit { margin-left: 12em; }
em { font-weight: bold; padding-right: 1em; vertical-align: top; }
</style>
</head>

<body>
 <form class="cmxform" id="commentForm" method="get" action="">
 <fieldset>
 <legend>A simple comment form with submit validation and default
messages</legend>
 <p>
 <label for="cfname">First Name</label>
 *<input id="cfname" name="fname" size="25" />
 </p>
 <p>
 <p>
 <label for="clname">Last Name</label>
 *<input id="clname" name="lname" size="25" />
 </p>
 <p>
 <label for="cemail">E-Mail</label>
 *<input id="cemail" name="email" size="25" />
 </p>
 <p>
 <label for="curl">URL of Your Web Site</label>
 <input id="curl" name="url" size="25" />
 </p>
 <p>
 <label for="cnumber">Years Your Site Has Been in Business</label>
 <input id="cnumber" name="url" size="25" />
 </p>
 <p>
 <label for="ccomment">Your Comment</label>
 *<textarea id="ccomment" name="comment" cols="22"></textarea>
 </p>
 <p>
 <label for="ccheckbox">Please check this box to agree to our
terms</label>
 *<input type="checkbox" name="ccheckbox" />
 </p>
 <p>
 <input class="submit" type="submit" value="Submit" />
 </p>
 </fieldset>
 </form>
</body>
</html>

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

2. Editor: Enter the appropriate reference for the jQuery library and plug-in information
in the <head></head> section of the lab11-3.htm file, as shown in bold, then save
the file. Ensure that the plug-in is entered after the library:

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 11-3</title>
<script src="jquery-1.4.4.min.js" type="text/javascript"></script>
<script src="jquery.validate.js" type="text/javascript"></script>
<style type="text/css">
* { font-family: Verdana; font-size: 96%; }
label { width: 10em; float: left; }
label.error { float: none; color: red; padding-left: .5em; vertical-align:
top; }
p { clear: both; }
.submit { margin-left: 12em; }
em { font-weight: bold; padding-right: 1em; vertical-align: top; }
</style>
</head>

3. Browser: Test your XHTML page. You may get warnings, depending on your browser,
but the browser should display the page as shown in Figure 11-1.

Figure 11-1: Basic form page without validation

4. Editor: Now install the plug-in commands in the <head></head> section of the
lab11-3.htm file (as shown in bold) to make the plug-in accessible to your page, then
save the file:

</style>
<script>
$(document).ready(function(){
$("#commentForm").validate();
});
</script>
</head>

This step enables the plug-in to work. Now you can begin validating.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Tech Note: When you are developing code in any language, the best practice is "code a
little, test a lot." In this case, you will ensure that the first validation works properly
before you move on to the second validation, and so forth. This way, you will not be
attempting to troubleshoot multiple errors at the same time.

5. Editor: Enter your the code for the first field validation into the lab11-3.htm file. You
will verify that the First Name field was submitted with text and is at least two
characters long. Enter the following code, then save the file:

 <legend>A simple comment form with submit validation and default
messages</legend>
<p>
 <label for="cfname">First Name</label>
 *<input id="cfname" name="fname" size="25" class="required"
minlength="2" />
 </p>

Notice that the label and the id match, that the class is required, and the minlength
is 2. These are all documented in the script.

6. Browser: Test the script. Open the Web page, and submit the form without entering
anything into the First Name field. If the script ran correctly, you should see the
message that appears in Figure 11-2.

Figure 11-2: First Name field is validated

7. Browser: The message you see comes from the plug-in script evaluating the fields as
directed by the script. Now try typing two letters into the First Name field and
submitting the form again. The red warning will disappear.

Tech Note: Ensure that every ID is different and that you test the progress step-by-step.
It is far easier to fix an error when you know exactly where it is, rather than testing
large chunks of code with multiple actions all at once, and having an error that will
take hours to track down.

8. Editor: Enter the code for each validation line by line, testing each line as you go and
saving the file each time. When you are finished with all the validations, the code
should read as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 11-3</title>
<script src="jquery-1.4.4.min.js"></script>
<script type="text/javascript" src="jquery.validate.js"></script>
<style type="text/css">
* { font-family: Verdana; font-size: 96%; }
label { width: 10em; float: left; }
label.error { float: none; color: red; padding-left: .5em; vertical-align:
top; }
p { clear: both; }
.submit { margin-left: 12em; }
em { font-weight: bold; padding-right: 1em; vertical-align: top; }
</style>
<script>
$(document).ready(function(){
$("#commentForm").validate();

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

});
</script>
</head>

<body>
 <form class="cmxform" id="commentForm" method="get" action="">
 <fieldset>
 <legend>A simple comment form with submit validation and default
messages</legend>
 <p>
 <label for="cfname">First Name</label>
 *<input id="cfname" name="fname" size="25" class="required"
minlength="2" />
 </p>
 <p>
 <p>
 <label for="clname">Last Name</label>
 *<input id="clname" name="lname" size="25" class="required"
minlength="2" />
 </p>
 <p>
 <label for="cemail">E-Mail</label>
 *<input id="cemail" name="email" size="25" class="required
email" />
 </p>
 <p>
 <label for="curl">URL of Your Web Site</label>
 <input id="curl" name="url" size="25" class="url" value="" />
 </p>
 <p>
 <label for="cnumber">Years Your Site Has Been in Business</label>
 <input id="cnumber" name="url" size="25" class="digits"
value="" />
 </p>
 <p>
 <label for="ccomment">Your Comment</label>
 *<textarea id="ccomment" name="comment" cols="22"
class="required"></textarea>
 </p>
 <p>
 <label for="ccheckbox">Please check this box to agree to our
terms</label>
 *<input type="checkbox" name="ccheckbox" class="required"/>
 </p>
 <p>
 <input class="submit" type="submit" value="Submit" />
 </p>
 </fieldset>
 </form>
</body>
</html>

9. Browser: When you test the script in your browser, the page will display messages
directing you to revise your input as appropriate (based on whether you entered
invalid data or no data in required fields), as shown in Figure 11-3.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 11-3: Completed form validation script result

When testing your script, the best practice is to enter one line at a time, test to see if it
works correctly as expected under all circumstances, and then move on to the next line.
If your project has a separate site designer who outlined the X/HTML page, then you
would send your script back to that person for further testing, and to ensure that the
specifications you were given match the results you have returned.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 12-1: Using AJAX to dynamically edit the DOM with button clicks

In this lab, you will use AJAX to dynamically edit the DOM and allow the user to change
the page's appearance by clicking buttons.

1. Editor: From the Lesson_12/Lab12-1 folder of your student files, open the
file lab12-1.htm. Study the code, which is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<title>Lab 12-1</title>
<script language="JavaScript" src="ajax.js"></script>

<script type="text/javascript">
function ChangeData(str)
{
 document.getElementById('MyID').innerHTML = str;
}
</script>
</head>

<body>
<h3>CIW JavaScript Specialist</h3>
<hr />
 <h2>AJAX Button Clicker</h2>
 <p>This script shows how to use multiple external scripts that load
dynamically when you click a button.</p>
 <input type="button" value="Button 1" onclick="loadScript('Data1.js')" />
 <input type="button" value="Button 2" onclick="loadScript('Data2.js')" />
 <input type="button" value="Button 3" onclick="loadScript('Data3.js')" />
 <p>
 <div id="MyID"> </div>
 </p>
 <hr />
</body>
</html>

The most important portion of this script to notice is the onclick function: Upon the
click of each button, the loadScript method will display the appropriate text for the
button clicked.

2. Editor: Now open the ajax.js file and study the code. This file is attached to the
XHTML file and contains all the actual code. Included in this code is the following
function:

<script type="text/javascript">
function ChangeData(str)
{
 document.getElementById('MyID').innerHTML = str;
}
</script>

3. Editor: Continue to study the ajax.js file. Following is the code for the loadScript
and loadData functions:

function loadScript(scriptURL)
{
 var newScript = document.createElement("script");
 newScript.src = scriptURL;

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

 document.body.appendChild(newScript);
}

function loadData(URL)
{
// Create the XML request
 xmlReq = null;
 if(navigator.appName == "Microsoft Internet Explorer") xmlReq = new
ActiveXObject("Microsoft.XMLHTTP");
 else xmlReq = new XMLHttpRequest();

 if(xmlReq==null) return; // Failed to create the request

 xmlReq.open("GET", URL, true);

// Anonymous function to handle changed request states
 xmlReq.onreadystatechange = function()
 {
 switch(xmlReq.readyState)
 {
 case 0: // Uninitialized
 break;
 case 1: // Loading
 break;
 case 2: // Loaded
 break;
 case 3: // Interactive
 break;
 case 4: // Done!
 // Retrieve the data between the <quote> tags
 ChangeData(xmlReq.responseText);
 break;
 default:
 break;
 }
 }

// Make the request
 xmlReq.send (null);
}

4. Editor: Most of the methods you see here have been shown previously. In the
following section of code, document.createElement creates a new element called
"script", then assigns it the variable name "newScript". It is then used with the
method appendChild(newScript) to enter the results of the clicked button. The code
appears as follows:

function loadScript(scriptURL)
{
 var newScript = document.createElement("script");
 newScript.src = scriptURL;
 document.body.appendChild(newScript);
}

5. Editor: The next portion of code creates the AJAX XMLHttpRequest, and also performs
the browser check to see which browser is used (Internet Explorer or another) in
order to maintain browser compatibility. The last line begins the communication with
the XML data:

 xmlReq = null;
 if(navigator.appName == "Microsoft Internet Explorer") xmlReq = new
ActiveXObject("Microsoft.XMLHTTP");
 else xmlReq = new XMLHttpRequest();

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

 if(xmlReq==null) return; // Failed to create the request

xmlReq.open("GET", URL, true);

6. Editor: The next portion of code shows where the onreadystatechange property is
instantiated. It will only work if it is case 4, which means that it is in the fully loaded
state:

xmlReq.onreadystatechange = function()
 {
 switch(xmlReq.readyState)
 {
 case 0: // Uninitialized
 break;
 case 1: // Loading
 break;
 case 2: // Loaded
 break;
 case 3: // Interactive
 break;
 case 4: // Done!

7. Editor: Open the file Data1.js and study the code. This is the JavaScript code that
displays the data that your AJAX application retrieved, which can be XML or text
data. In this case, each of the Data.js files calls a text file (instead of XML), whose
name corresponds to the associated JavaScript file name:

loadData("Data1.txt");

8. Browser: Open the file lab12-1.htm and test the script. You will see that every time
you click a button, the text changes without refreshing the page, based on the
loading of the various scripts ('Data1.js', 'Data2.js', 'Data3.js'). Test the script in
several different browsers, and it should run the same. AJAX can render quite
differently in different browsers, so be sure to test all your AJAX scripts thoroughly.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 12-2: Using AJAX and libraries to create tooltips

In this lab, you will use AJAX, JavaScript, libraries and plug-ins to create aesthetically
pleasing tooltips with your code.

1. Editor: From the Lesson_12/Lab_12-2 folder in your student files, open the file
lab12-2.htm and study the code, which appears as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />
 <title>Lab 12-2</title>

 <link rel="stylesheet" href="jquery.cluetip.css" type="text/css" />
 <link rel="stylesheet" href="demo.css" type="text/css" />

</head>
<body>

 <h1 id="top">AJAX with Plug-ins and Add-ons</h1>
 <p>Test 1</p>
 <p>Test 2</p>
 <p>Test 3</p>
 <h4 title="Fancy Title!" id="test4.html">Test 4</h4>
 <p><a class="basic" href="http://www.CIWcertified.com/" title="about this
link:" rel="test5.html">CIW Certification is well worth the effort!</p>
 </body>
</html>

2. Browser: Open the file lab12-2.htm and run the script. You will see that the links do
work, but no effects are added to the XHTML. The page directs to another XHTML
page without any other events.

3. Editor: Add JavaScript and AJAX external scripts to this page by adding the
following code to the lab12-2.htm file, as shown in bold. Then save the file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />
 <title>Lab 12-2</title>

 <link rel="stylesheet" href="jquery.cluetip.css" type="text/css" />
 <link rel="stylesheet" href="demo.css" type="text/css" />

 <script type="text/javascript" src="ajax_jquery.js"></script>

</head>
<body onload="loadData()">

 <h1 id="top">AJAX with Plug-ins and Add-ons</h1>
 <p>Test 1</p>
 <p>Test 2</p>
 <p>Test 3</p>
 <h4 title="Fancy Title!" id="test4.html">Test 4</h4>
 <p><a class="basic" href="http://www.CIWcertified.com/" title="about this
link:" rel="test5.html">CIW Certification is well worth the effort!</p>

</body>
</html>

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

4. Browser: Reload the page and run the script again. You will see that each link has a
different effect. AJAX is dynamically pulling in jQuery files, which are stored in the
ajax.jqery.js file instead of referenced in separate <script> tags in the XHTML (the
DOM is manipulated to create the <script> tags on the fly). The XML data file is also
stored in the JavaScript file. These files reload the selected elements without
refreshing the entire page, so the tooltips appear to pop up.

Tech Note: Using Firebug to view the source code in the ajax.jquery.js file, you can see
the DOM as it truly is after JavaScript has fired. You can see that the browser has
created all the script tags and placed them in the code for you. You cannot see this in
View Source because they are not typed into the initial code; they are created
dynamically when the script is run.

5. Browser: Try running this script in some different browsers. Is anything different? It
should run similarly in various browsers, with some small differences. However,
determining this is the important goal of testing your script in multiple browsers.

6. Editor: Open the jquery.cluetip.js file. This code is a jQuery plug-in that creates the
tooltips.

7. Browser: Open the demo.js file in another instance of your text editor. This is the file
that you (the developer) would create to reference the effects that you choose to use
in your Web page. Study the code, which is as follows:

$(document).ready(function() {
//default theme
 $('a.title').cluetip({splitTitle: '|'});
 $('a.basic').cluetip();
 $('a.custom-width').cluetip({width: '200px', showTitle: false});
 $('h4').cluetip({attribute: 'id', hoverClass: 'highlight'});
 $('#sticky').cluetip({sticky: true, closePosition: 'title', arrows: true });
 $('#examples a:eq(5)').cluetip({
 hoverClass: 'highlight',
 sticky: true,
 closePosition: 'bottom',
 closeText: '',
 truncate: 60
 });
 $('a.load-local').cluetip({local:true, hideLocal: true, sticky: true,
arrows: true, cursor: 'pointer'});
 $('#clickme').cluetip({activation: 'click', sticky: true, width: 650});
 $('ol:first a:last').cluetip({tracking: true});

// jTip theme
 $('a.jt:eq(0)').cluetip({
 cluetipClass: 'jtip',
 arrows: true,
 dropShadow: false,
 sticky: true,
 mouseOutClose: true,
 closePosition: 'title',
 closeText: ''
 });
 $('a.jt:eq(1)').cluetip({cluetipClass: 'jtip', arrows: true, dropShadow:
false, hoverIntent: false});
 $('span[title]').css({borderBottom: '1px solid #900'}).cluetip({splitTitle:
'|', arrows: true, dropShadow: false, cluetipClass: 'jtip'});

 $('a.jt:eq(2)').cluetip({
 cluetipClass: 'jtip',
 arrows: true,
 dropShadow: false,
 height: '150px',

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

 sticky: true,
 positionBy: 'bottomTop'
 });

 $('a.jt:eq(3)').cluetip({local: true, hideLocal: false});

 $('a.jt:eq(4)').cluetip({
 cluetipClass: 'jtip', arrows: true,
 dropShadow: false,
 onActivate: function(e) {
 var cb = $('#cb')[0];
 return !cb || cb.checked;
 }
 });

// Rounded Corner theme
 $('ol.rounded a:eq(0)').cluetip({sticky: true, splitTitle: '|', dropShadow:
false, cluetipClass: 'rounded', showTitle: false});
 $('ol.rounded a:eq(1)').cluetip({cluetipClass: 'rounded', dropShadow: false,
showTitle: false, positionBy: 'mouse'});
 $('ol.rounded a:eq(2)').cluetip({cluetipClass: 'rounded', dropShadow: false,
showTitle: false, positionBy: 'bottomTop', topOffset: 70});
 $('ol.rounded a:eq(3)').cluetip({cluetipClass: 'rounded', dropShadow: false,
sticky: true, ajaxCache: false, arrows: true});
 $('ol.rounded a:eq(4)').cluetip({cluetipClass: 'rounded', dropShadow:
false});
});

//Unrelated to clueTip -- just for the demo page...

$(document).ready(function() {
 $('div.html, div.jquery').next().css('display',
'none').end().click(function() {
 $(this).next().toggle('fast');
 });

 $('a.false').click(function() {
 return false;
 });
});

// inserting jQuery UI Themeswitcher tool

$('#themeswitcher').themeswitcher({loadTheme: 'UI Lightness'});

Tech Note: The file jquery.cluetip.js is the base plug-in. The file demo.js is the file that
you (the developer) create to reference the effects that you choose to apply to your Web
page. This separation of duties makes the script extremely lightweight, because the
Web page will only reference the needed functions. Then you can place your scripts in
a repository where you can easily reuse the effects you create.

8. Editor: The effects for this plug-in are defined by the defaults in the jquery.cluetip.js
file. You will find the defaults toward the bottom of the script (lines 538 to 573).

9. Editor: In the demo.js file, find 'a.basic'. You will see that it is the default tooltip
with none of the special effects. Everything is set as default by the file
jquery.tooltip.js. This means that the special functions of jquery.tooltip.js are not
used.

10. Editor: In the demo.js file, find the following line:

$('#sticky').cluetip({sticky: true, closePosition: 'title', arrows: true });

Each property within this line means something in relation to the defaults:

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

• sticky: true — indicates that the tooltip will remain on until closed.

• closePosition: 'title' — means the X to close the box will be at the title (top).

• arrows: — the value true will place an arrow pointing to the text.

You can see that by understanding the plug-in jquery.js, the commands within the
jquery.cluetip.js are relatively simple to interpret, understand and deploy.

Warning: Thorough research is required before selecting a library or plug-in. Many plug-
ins have security holes or bugs, or are not cross-browser compatible. The time you
spend researching your libraries and plug-ins will pay off with better, cleaner and safer
code.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 13-1: Installing and debugging with the Mozilla Firebug add-on

In this lab, you will install the Firebug add-on to Mozilla Firefox, and use it to locate and
view errors in a script.

Note: Use the Mozilla Firefox browser for this lab. If you do not already have Firefox
installed on your system, install it from the www.firefox.com site before beginning the
lab.

1. Firefox browser: Enter the URL www.firefox.com, which will take you to the Mozilla
Firefox home page.

2. Firefox: At the top of the screen you will see menu choices. Hover your cursor over
the Add-ons menu, and a drop-down list will appear, as shown in Figure 13-6.

Figure 13-6: Mozilla Firefox home page — Add-ons menu

3. Firefox: Click Firefox Add-ons, which is the top choice in the menu. On the Add-ons
page, in the left column under Categories, click the Web Development link. Scroll
down to the Top Downloads list. You will see Firebug at or near the top of this list.
Click the Firebug link.

Warning: Mozilla offers thousands of add-ons for the Firefox browser. Many of these
are written by third parties, so use caution. You should thoroughly investigate any
interesting add-on prior to installing it on your system.

4. Firefox: You will see the Firebug Add-ons page shown in Figure 13-7. Read the
information about Firebug, then click the Add To Firefox button.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 13-7: Firebug Add-ons home page

5. Firefox: Notice that after you click the Add To Firefox button, you will see the
security alert shown in Figure 13-8. Your browser is reminding you to use caution
when choosing to install add-ons, even from its own site.

Figure 13-8: Firefox security alert warning about add-on installation

6. Firefox: Click the Install Now button. The site will install the add-on and prompt
you to restart Firefox. Restart the browser now. The Firebug debugger is now
installed.

7. Firefox: After restarting, you will notice no change in Firefox at first. From your
student files, open the lab13-1.htm file in Firefox. In the Tools drop-down, select
Firebug, then select Open Firebug In New Window, as shown in Figure 13-9.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Figure 13-9: Opening Firebug debugger in Firefox

8. Firefox: A new window will appear, as shown in Figure 13-10. Firebug tells you there
is an error, specifies the nature of the error ("hello is not defined"), and also specifies
which line in the code you should review to find it (line 12).

Figure 13-10: Firebug error alert box

9. Editor: Open the lab13-1.htm file in your editor, and review the code, which is as
follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 13-1</title>
</head>

<body>
<h3>CIW JavaScript Specialist</h3>
<hr />
<script language="JavaScript" type="text/javascript">
alert(hello);
</script>
</body>
</html>

Notice Line 12, where the alert() method is used. Do you see the error? There are no
quotes around hello.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

10. Editor: Place the quotes around hello, then save the file as error-debugged.htm.
Run this file in Firefox again. You will see that the error is gone. The pop-up from the
script will appear as expected (as shown in Figure 13-11), and Firebug will return no
errors.

Figure 13-11: Debugged JavaScript rendered as expected

11. Browsers: Test the repaired error-debugged.htm file in Internet Explorer. You will
get the same results. Now test the same file in Google Chrome, and you will again get
the same results. You have just repaired your first bug in JavaScript using a
debugger.

Firefox does not show errors on a page by default. You must open Firebug to show errors.
However, if you want to disable Firebug from debugging a page, you can press the
SHIFT+F12 keys.

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

Lab 13-2: Troubleshooting a logic error in JavaScript

In this lab, you will learn how to debug logic errors in JavaScript code that do not return
error alerts, as well as repair the broken script.

1. Editor: Open the lab13-2.htm file and study the code, which is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Lab 13-2</title>
</head>

<body>
<h3>CIW JavaScript Specialist</h3>
<hr />

<script type="text/javascript">
<!--

/***
 Mistakes in code cost time and money. Watch your
 scripts!
***/

var a = prompt("Enter a number", "");
var b = prompt("Enter a second number", "");
var c = prompt("Enter a third number", "");
var d = prompt("Enter a fourth number", "");
var e = prompt("Enter a fifth number", "");

var solution = a*b+c+d*e;

document.write("The total you are looking for is a*b+c+d*e = " +
solution);/*Using all 2s for input, the answer should be 10*/
</script>
</body>
</html>

2. Browser: Open the file lab13-2.htm and run the script. At each prompt, enter the
number 2. If the equation were solved from left to right as you expected, the script
should end with an answer of 16. Instead, it is returning 424. Why? No error alerts
appear in the browser, but something is wrong. This is called a logic error. Now the
troubleshooting begins.

3. Editor: The first step is to ensure that the variables you think are running in the
script are actually running. Enter the following code as shown in bold, then save the
file. This alert is called a watchpoint, and it allows you to monitor this point in the
script to verify whether it is functioning as expected:

var solution = a*b+c+d*e;

alert(a + " " + b + " "+ c + " "+ d + " " + e)

document.write("The total you are looking for is a*b+c+d*e = " + solution);

4. Browser: Run the script again, entering 2 in each prompt. After the variables are
declared, you will be able to see the variable conditions where you expect to see them
(i.e., an alert [watchpoint] will show you the numbers you entered). In the alert, you

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

should see a series of 2s, as shown in Figure 13-12. This verifies that the script did
receive the same input you thought you entered. But the result is still 424.
Something is still wrong.

Figure 13-12: Watchpoint showing user input

5. Editor: Next, you will divide the mathematical expression into parts and examine it.
This may help determine where the math is not working. Enter the following bolded
code just above the alert you placed previously, then save the file. If the script runs
correctly, then the answer for f should be 10:

var solution = a * b + c + d * e;
alert(a + " " + b + " "+ c + " "+ d + " " + e)

var firstpart = a * b + c;
alert("a * b + c = " + firstpart);
var f = (a*b+c+d*e);
alert("f = a*b+c+d*e =" + f);

document.write("The total you are looking for is a*b+c+d*e = " + solution);

6. Browser: Run the script again, entering 2 each time. You now see three alerts. The
first alert re-confirms that you entered the correct input: a series of 2s. The second
alert (shown in Figure 13-13) shows the first part of the equation and reveals the
problem: a*b+c=42. The script is concatenating, instead of multiplying and then
adding. It multiplies 2*2 to get 4, then concatenates 2 with the + operator for a result
of 42. The third alert (also in Figure 13-13) confirms the concatenation: f = a*b+c+d*e
= 424. So your watchpoints revealed that both + operators are performing
concatenation, instead of addition as intended. This is a logic error. You can fix this.

Figure 13-13: Two watchpoints revealing logic error — concatenation instead of addition

7. Editor: Find the following code shown in strikethrough and replace it with the code
shown in bold, then save the file:

var solution = a * b + c + d * e;
alert(a + " " + b + " "+ c + " "+ d + " " + e)
var firstpart = a * b + c;
alert("a * b + c = " + firstpart);
var f = (a*b+c+d*e);
alert("f = a*b+c+d*e =" + f);

var f = (Number(a) * Number(b) + Number(c));
var solution = (Number(a)*Number(b)+Number(c)) + d*e;
alert(a + " " + b + " "+ c + " "+ d + " " + e)

JavaScript Specialist Lab Handouts

© 2011 Certification Partners, LLC — All Rights Reserved Version 1.01

alert("a times b plus c is " + f);
var dtimese = d*e;
alert("d times e = " + dtimese);

8. Browser: Run the script again. When you input all 2s, you should again see the
watchpoint alerts, but this time they are performing the math correctly. The first alert
re-confirms your input. The second alert (shown in Figure 13-14) shows the first part
of the equation with the correct result of 6. The third alert (also in Figure 13-14)
shows the second part of the equation with the correct result of 4. The final page
shows the complete equation with the correct result of 10 (the two parts of the
equation added instead of concatenated).

Figure 13-14: Watchpoints showing logic error corrected

Notice that if you performed this equation yourself working from left to right, you
would expect a result of 16 (because 2*2=4… +2=6… +2=8… *2=16). This result
would be incorrect, but if it was what you expected, then the unexpected result of 10
is another type of logic error and must be addressed. The fact is that computer
programs give mathematical precedence to certain operators (unless otherwise
directed); for example, multiplication is performed before addition. Dividing the
equation into two parts showed this: The first multiplication operation resulted in 6,
the second resulted in 4, and the addition of those two operations (performed last)
resulted in 10. Therefore, your watchpoints that divided the equation helped to show
you the correct mathematical precedence that took place. These watchpoints helped
you troubleshoot the second logic error, which was the unexpected result. You now
know why the result was 10 instead of 16, and you realize it is correct based on math
precedence.

9. But how was the concatenation error solved? In the original equation, the script did
not recognize all the variables (a, b, c, d and e) as numbers, so it concatenated some
of them left to right. To resolve this, you declared the numbers explicitly as numbers
using the Number() method. Specifying or changing data types in this way is called
casting; in this case, it forced the script to treat all the variables like numbers. The
script then performed addition instead of concatenation for the + operator, and solved
the equation using proper mathematical precedence.

In this lab, you encountered two logic errors. You performed troubleshooting, and by
running alerts to check your progress and declaring the numbers explicitly as numbers,
you solved both logic errors.

